首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   71篇
  2021年   8篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   22篇
  2014年   16篇
  2013年   18篇
  2012年   21篇
  2011年   24篇
  2010年   13篇
  2009年   15篇
  2008年   16篇
  2007年   22篇
  2006年   23篇
  2005年   17篇
  2004年   17篇
  2003年   23篇
  2002年   12篇
  2001年   24篇
  2000年   23篇
  1999年   14篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1993年   5篇
  1992年   15篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   13篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   22篇
  1983年   8篇
  1981年   6篇
  1979年   8篇
  1978年   15篇
  1977年   19篇
  1976年   16篇
  1975年   11篇
  1974年   5篇
  1973年   7篇
  1972年   14篇
  1971年   8篇
  1970年   8篇
  1968年   8篇
  1967年   4篇
  1899年   5篇
排序方式: 共有680条查询结果,搜索用时 343 毫秒
581.
The focal adhesion docking protein NEDD9/HEF1/Cas-L regulates cell migration and cancer invasion. NEDD9 is a member of the Cas family of proteins that share conserved overall protein-protein interaction domain structure, including a substrate domain that is characterized by extensive tyrosine (Y) phosphorylation. Previous studies have suggested that phosphorylation of Y253 in the substrate domain of the Cas family protein p130Cas is specifically required for p130Cas function in cell migration. While it is clear that tyrosine phosphorylation of the NEDD9 substrate domain is similarly required for the regulation of cell motility, whether individual NEDD9 tyrosine residues have discrete function in regulating motility has not previously been reported. In the present study we have used a global sequence alignment of Cas family proteins to identify a putative NEDD9 equivalent of p130Cas Y253. We find that NEDD9 Y189 aligns with p130Cas Y253 and that it is conserved among NEDD9 vertebrate orthologues. Expression of NEDD9 in which Y189 is mutated to phenylalanine results in increased rates of cell migration and is correlated with increased disassembly of GFP.NEDD9 focal adhesions. Conversely, mutation to Y189D significantly inhibits cell migration. Our previous data has suggested that NEDD9 stabilizes focal adhesions and the present data therefore suggests that phosphorylation of Y189 NEDD9 is required for this function. These findings indicate that the individual tyrosine residues of the NEDD9 substrate domain may serve discrete functional roles. Given the important role of this protein in promoting cancer invasion, greater understanding of the function of the individual tyrosine residues is important for the future design of approaches to target NEDD9 to arrest cancer cell invasion.  相似文献   
582.
Pathological rates of gallbladder salt and water transport may promote the formation of cholesterol gallstones. Because prairie dogs are widely used as a model of this event, we characterized gallbladder ion transport in animals fed control chow by using electrophysiology, ion substitution, pharmacology, isotopic fluxes, impedance analysis, and molecular biology. In contrast to the electroneutral properties of rabbit and Necturus gallbladders, prairie dog gallbladders generated significant short-circuit current (I(sc); 171 +/- 21 microA/cm(2)) and lumen-negative potential difference (-10.1 +/- 1.2 mV) under basal conditions. Unidirectional radioisotopic fluxes demonstrated electroneutral NaCl absorption, whereas the residual net ion flux corresponded to I(sc). In response to 2 microM forskolin, I(sc) exceeded 270 microA/cm(2), and impedance estimates of the apical membrane resistance decreased from 200 Omega.cm(2) to 13 Omega.cm(2). The forskolin-induced I(sc) was dependent on extracellular HCO(3)(-) and was blocked by serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS) and acetazolamide, whereas serosal bumetanide and Cl(-) ion substitution had little effect. Serosal trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl-chroman and Ba(2+) reduced I(sc), consistent with the inhibition of cAMP-dependent K(+) channels. Immunoprecipitation and confocal microscopy localized cystic fibrosis transmembrane conductance regulator protein (CFTR) to the apical membrane and subapical vesicles. Consistent with serosal DNDS sensitivity, pancreatic sodium-bicarbonate cotransporter protein pNBC1 expression was localized to the basolateral membrane. We conclude that prairie dog gallbladders secrete bicarbonate through cAMP-dependent apical CFTR anion channels. Basolateral HCO(3)(-) entry is mediated by DNDS-sensitive pNBC1, and the driving force for apical anion secretion is provided by K(+) channel activation.  相似文献   
583.
Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6–15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.  相似文献   
584.
Hybrid zones provide unprecedented opportunity for the study of the evolution of reproductive isolation, and the extent of hybridization across individuals and genomes can illuminate the degree of isolation. We examine patterns of interchromosomal linkage disequilibrium (ILD) and the presence of hybridization in Atlantic cod, Gadus morhua, in previously identified hybrid zones in the North Atlantic. Here, previously identified clinal loci were mapped to the cod genome with most (∼70%) occurring in or associated with (<5 kb) coding regions representing a diverse array of possible functions and pathways. Despite the observation that clinal loci were distributed across three linkage groups, elevated ILD was observed among all groups of clinal loci and strongest in comparisons involving a region of low recombination along linkage group 7. Evidence of ILD supports a hypothesis of divergence hitchhiking transitioning to genome hitchhiking consistent with reproductive isolation. This hypothesis is supported by Bayesian characterization of hybrid classes present and we find evidence of common F1 hybrids in several regions consistent with frequent interbreeding, yet little evidence of F2 or backcrossed individuals. This work suggests that significant barriers to hybridization and introgression exist among these co-occurring groups of cod either through strong selection against hybrid individuals, or genetic incompatibility and intrinsic barriers to hybridization. In either case, the presence of strong clinal trends, and little gene flow despite extensive hybridization supports a hypothesis of reproductive isolation and cryptic speciation in Atlantic cod. Further work is required to test the degree and nature of reproductive isolation in this species.  相似文献   
585.
Anadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species. The database included microsatellite data from 9142 individuals from 149 sampling locations and data from a medium‐density SNP array providing genotypes for >3000 SNPs for 50 sampling locations. We used neutral and putatively selected loci to integrate adaptive information in the definition of conservation units. Bayesian clustering with the microsatellite data set and with neutral SNPs identified regional groupings largely consistent with previously published regional assessments. The use of outlier SNPs did not result in major differences in the regional groupings, suggesting that neutral markers can reflect the geographic scale of local adaptation despite not being under selection. We also performed assignment tests to compare power obtained from microsatellites, neutral SNPs and outlier SNPs. Using SNP data substantially improved power compared to microsatellites, and an assignment success of 97% to the population of origin and of 100% to the region of origin was achieved when all SNP loci were used. Using outlier SNPs only resulted in minor improvements to assignment success to the population of origin but improved regional assignment. We discuss the implications of these new genetic resources for the conservation and management of Atlantic salmon in North America.  相似文献   
586.
Dynamic exchange of molecules between the cytoplasm and integrin-based focal adhesions provides a rapid response system for modulating cell adhesion. Increased residency time of molecules that regulate adhesion turnover contributes to adhesion stability, ultimately determining migration speed across two-dimensional surfaces. In the present study we test the role of Src kinase in regulating dynamic exchange of the focal adhesion protein NEDD9/HEF1/Cas-L. Using either chemical inhibition or fibroblasts genetically null for Src together with fluorescence recovery after photobleaching (FRAP), we find that Src significantly reduces NEDD9 exchange at focal adhesions. Analysis of NEDD9 mutant constructs with the two major Src-interacting domains disabled revealed the greatest effects were due to the NEDD9 SH2 binding domain. This correlated with a significant change in two-dimensional migratory speed. Given the emerging role of NEDD9 as a regulator of focal adhesion stability, the time of NEDD9 association at the focal adhesions is key in modulating rates of migration and invasion. Our study suggests that Src kinase activity determines NEDD9 exchange at focal adhesions and may similarly modulate other focal adhesion-targeted Src substrates to regulate cell migration.  相似文献   
587.
588.
Avoiding model selection bias in small-sample genomic datasets   总被引:2,自引:0,他引:2  
MOTIVATION: Genomic datasets generated by high-throughput technologies are typically characterized by a moderate number of samples and a large number of measurements per sample. As a consequence, classification models are commonly compared based on resampling techniques. This investigation discusses the conceptual difficulties involved in comparative classification studies. Conclusions derived from such studies are often optimistically biased, because the apparent differences in performance are usually not controlled in a statistically stringent framework taking into account the adopted sampling strategy. We investigate this problem by means of a comparison of various classifiers in the context of multiclass microarray data. RESULTS: Commonly used accuracy-based performance values, with or without confidence intervals, are inadequate for comparing classifiers for small-sample data. We present a statistical methodology that avoids bias in cross-validated model selection in the context of small-sample scenarios. This methodology is valid for both k-fold cross-validation and repeated random sampling.  相似文献   
589.
590.
Many cellular activities are controlled by post-translational modifications, the study of which is hampered by the lack of specific reagents due in large part to their ubiquitous and non-immunogenic nature. Although antibodies against specifically modified sequences are relatively easy to obtain, it is extremely difficult to derive reagents recognizing post-translational modifications independently of the sequence context surrounding the modification. In this study, we examined the possibility of selecting such antibodies from large phage antibody libraries using sulfotyrosine as a test case. Sulfotyrosine is a post-translational modification important in many extracellular protein-protein interactions, including human immunodeficiency virus infection. After screening almost 8000 selected clones, we were able to isolate a single specific single chain Fv using two different selection strategies, one of which included elution with tyrosine sulfate. This antibody was able to recognize sulfotyrosine independently of its sequence context in test peptides and a number of different natural proteins. Antibody reactivity was lost by antigen treatment with sulfatase or preincubation with soluble tyrosine sulfate, indicating its specificity. The isolation of this antibody signals the potential of phage antibody libraries in the derivation of reagents specific for post-translational modifications, although the extensive screening required indicates that such antibodies are extremely rare.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号