首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   50篇
  544篇
  2023年   1篇
  2022年   13篇
  2021年   16篇
  2020年   10篇
  2019年   13篇
  2018年   11篇
  2017年   16篇
  2016年   10篇
  2015年   20篇
  2014年   35篇
  2013年   32篇
  2012年   44篇
  2011年   35篇
  2010年   22篇
  2009年   26篇
  2008年   25篇
  2007年   35篇
  2006年   22篇
  2005年   27篇
  2004年   17篇
  2003年   16篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1987年   5篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1960年   1篇
排序方式: 共有544条查询结果,搜索用时 15 毫秒
51.
The light exposure history and/or binding of different herbicides at the Q(B) site may induce heterogeneity of photosystem II acceptor side conformation that affects D1 protein degradation under photoinhibitory conditions. GTP was recently found to stimulate the D1 protein degradation of photoinactivated photosystem II (Spetea, C. , Hundal, T., Lohmann, F., and Andersson, B. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 6547-6552). Here we report that GTP enhances the cleavage of the D1 protein D-E loop following exposure of thylakoid membranes to either high light, low light, or repetitive single turnover flashes but not to trypsin. GTP does not stimulate D1 protein degradation in the presence of herbicides known to affect the accessibility of the cleavage site to proteolysis. However, GTP stimulates degradation that can be induced even in darkness in some photosystem II conformers following binding of the PNO8 herbicide (Nakajima, Y., Yoshida, S., Inoue, Y., Yoneyama, K., and Ono, T. (1995) Biochim. Biophys. Acta 1230, 38-44). Both the PNO8- and the light-induced primary cleavage of the D1 protein occur in the grana membrane domains. The subsequent migration of photosytem II containing the D1 protein fragments to the stroma domains for secondary proteolysis is light-activated. We conclude that the GTP effect is not confined to a specific photoinactivation pathway nor to the conformational state of the photosystem II acceptor side. Consequently, GTP does not interact with the site of D1 protein cleavage but rather enhances the activity of the endogenous proteolytic system.  相似文献   
52.
Two toxic, microcystin-producing, Microcystis sp. strains KLL MG-K and KLL MB-K were isolated as single colonies on agar plates from Lake Kinneret, Israel. Two non-toxic subcultures, MG-J and MB-J spontaneously succeeded the toxic ones under laboratory conditions. Southern analyses showed that MG-J and MB-J are lacking at least 34 kb of the mcy region, encoding the microcystin synthetase. Analyses of the 16S rRNA genes, the intergenic spacer region between cpcB and cpcA and the patterns of the polymerase chain reaction products of randomly amplified polymorphic DNA and highly iterated palindrome, and presence of mobile DNA elements did not allow unequivocal distinction between toxic and non-toxic subcultures. Laboratory and field experiments indicated an advantage of the toxic strain over its non-toxic successor. When grown separated by a membrane, which allowed passage of the media but not the cells, MG-K severely inhibited the growth of MG-J. Furthermore, when MG strains were placed in dialysis bags in Lake Kinneret during the season in which Microcystis is often observed, cells of MG-J lysed, whereas MG-K survived. Mechanisms whereby the non-toxic subcultures emerged and prevailed over the corresponding toxic ones under laboratory conditions, as well as a possible role of microcystin under natural conditions, are discussed.  相似文献   
53.
54.
55.
56.
Protease activity is tightly regulated in both normal and disease conditions. However, it is often difficult to monitor the dynamic nature of this regulation in the context of a live cell or whole organism. To address this limitation, we developed a series of quenched activity-based probes (qABPs) that become fluorescent upon activity-dependent covalent modification of a protease target. These reagents freely penetrate cells and allow direct imaging of protease activity in living cells. Targeted proteases are directly identified and monitored biochemically by virtue of the resulting covalent tag, thereby allowing unambiguous assignment of protease activities observed in imaging studies. We report here the design and synthesis of a selective, cell-permeable qABP for the study of papain-family cysteine proteases. This probe is used to monitor real-time protease activity in live human cells with fluorescence microscopy techniques as well as standard biochemical methods.  相似文献   
57.
The Saccharomyces cerevisiae nuclear membrane is part of a complex nuclear envelope environment also containing chromatin, integral and peripheral membrane proteins, and large structures such as nuclear pore complexes (NPCs) and the spindle pole body. To study how properties of the nuclear membrane affect nuclear envelope processes, we altered the nuclear membrane by deleting the SPO7 gene. We found that spo7Δ cells were sickened by the mutation of genes coding for spindle pole body components and that spo7Δ was synthetically lethal with mutations in the SUN domain gene MPS3. Mps3p is required for spindle pole body duplication and for a variety of other nuclear envelope processes. In spo7Δ cells, the spindle pole body defect of mps3 mutants was exacerbated, suggesting that nuclear membrane composition affects spindle pole body function. The synthetic lethality between spo7Δ and mps3 mutants was suppressed by deletion of specific nucleoporin genes. In fact, these gene deletions bypassed the requirement for Mps3p entirely, suggesting that under certain conditions spindle pole body duplication can occur via an Mps3p-independent pathway. These data point to an antagonistic relationship between nuclear pore complexes and the spindle pole body. We propose a model whereby nuclear pore complexes either compete with the spindle pole body for insertion into the nuclear membrane or affect spindle pole body duplication by altering the nuclear envelope environment.THE nuclear envelope is composed of distinct outer and inner nuclear membranes. The outer nuclear membrane is continuous with the endoplasmic reticulum. The inner nuclear membrane is associated with a unique set of proteins, some of which mediate interactions between the nuclear envelope and chromatin (reviewed in Zhao et al. 2009). Nuclear pore complexes traverse both membranes and allow transport of proteins and solutes between the cytoplasm and the nucleus. The inner and outer nuclear membranes fuse in the region surrounding each nuclear pore complex.In animal cells, the nuclear envelope disassembles as cells enter mitosis and reassembles upon mitotic exit. Nuclear envelope breakdown allows the association of chromosomes with spindle microtubules, which are nucleated from centrosomes that reside in the cytoplasm. In contrast, certain types of fungi, such as the budding yeast Saccharomyces cerevisiae, undergo closed mitosis, where the nuclear envelope remains intact throughout the entire cell cycle. Closed mitosis is possible because the yeast centrosome-equivalent, the spindle pole body (SPB), is embedded in the nuclear envelope, allowing the SPB to nucleate both cytoplasmic and nuclear microtubules.SPB duplication requires a mechanism for inserting the new SPB into the nuclear envelope (reviewed in Jaspersen and Winey 2004). The new SPB begins to form in late G1/early S phase as satellite material deposited on the cytoplasmic face of an electron-dense region of the nuclear envelope, called the half-bridge. The satellite material matures into a duplication plaque, which is then inserted into the nuclear membrane and becomes the daughter SPB. Many genes are known to be required for SPB duplication, and this process has been carefully examined cytologically (Rose and Fink 1987; Winey et al. 1991, 1993; Spang et al. 1995; Bullitt et al. 1997; Adams and Kilmartin 1999; Elliott et al. 1999; Schramm et al. 2000; Jaspersen et al. 2002; Nishikawa et al. 2003; Araki et al. 2006). However, the exact mechanisms by which SPB duplication and insertion occur remain a mystery.Equally unclear is how nuclear pore complexes are inserted into an intact nuclear envelope (reviewed in Hetzer and Wente 2009). For both the SPB and nuclear pore complexes, the inner and outer nuclear membranes must fuse to allow insertion into the nuclear envelope. Yeast and vertebrate nuclear pore complexes each have four pore membrane (POM) nucleoporins containing transmembrane domains. Other nucleoporins have motifs with potential for bending membranes or sensing membrane curvature. Thus, certain nuclear pore complex components may have the ability to alter the nuclear membrane or stabilize particular membrane conformations (Devos et al. 2004, 2006; Alber et al. 2007; Drin et al. 2007). It is interesting to note that, in S. cerevisiae, nuclear pore complexes are enriched in the vicinity of the SPB (Heath et al. 1995; Winey et al. 1997; Adams and Kilmartin 1999), but the significance of this phenomenon is not known. The SPB and nuclear pore complexes share at least two common components, the integral membrane protein Ndc1p and the small calcium-binding protein Cdc31p (Chial et al. 1998; Fischer et al. 2004). Ndc1p is thought to play a role in insertion of both SPBs and nuclear pore complexes into the nuclear membrane.SUN domain proteins are a conserved family of inner nuclear membrane proteins that interact with specific outer nuclear membrane proteins to form a physical bridge across the nuclear envelope (reviewed in Hiraoka and Dernburg 2009; Razafsky and Hodzic 2009). One of the components of the S. cerevisiae SPB is the SUN domain protein Mps3p. The N terminus of Mps3p is in the nucleoplasm, while the C terminus, containing the SUN domain, is found in the space between the inner and outer nuclear membranes. In addition to the SPB, Mps3p localizes to multiple foci at the nuclear periphery, and these two pools of Mps3p have distinct functions (Jaspersen et al. 2002, 2006; Nishikawa et al. 2003). At the SPB, Mps3p is required for half-bridge formation and early steps of SPB duplication, and cells compromised for Mps3p function accumulate in mitosis with a single SPB and a monopolar spindle (Jaspersen et al. 2002; Nishikawa et al. 2003). At the nuclear periphery, Mps3p is involved in tethering telomeres to the nuclear envelope in mitosis and meiosis, sequestering DNA double-strand breaks away from recombination factors, and associating with soluble chromatin proteins (Antoniacci et al. 2004, 2007; Bupp et al. 2007; Conrad et al. 2007, 2008; Oza et al. 2009; Schober et al. 2009).While many structural features of the yeast nucleus have been identified, little is known about how the physical properties of the nuclear membrane contribute to processes that occur at the nuclear envelope. As noted above, resident proteins of the nuclear envelope may affect nuclear membrane properties. In addition, the nuclear membrane is affected by altering lipid biosynthesis, for example, by inactivating the phosphatidic acid (PA) phosphohydrolase Pah1p or by inactivating the phosphates complex, made of Spo7p and Nem1p, which activates Pah1p. In the absence of Spo7p, Nem1p, or Pah1p, cells exhibit nuclear envelope extensions and extensive ER membrane sheets, and they also have altered membrane lipid composition, including a decrease in phosphatidylcholine and an increase in PA, phosphatidylethanolamine, and phosphatidylinositol (Siniossoglou et al. 1998; Santos-Rosa et al. 2005; Campbell et al. 2006; Han et al. 2006). These three proteins are unique among phospholipid biosynthesis proteins in their ability to affect nuclear morphology upon gene disruption (Han et al. 2008). A similar phenotype was seen upon overexpression of DGK1, which counteracts the activity of Pah1p by converting diacylglycerol to PA, leading to an increase in PA levels at the nuclear envelope (Han et al. 2008). Consistent with a conserved role for Pah1p in regulating nuclear envelope processes, deletion of either NEM1 or SPO7 is synthetically lethal with deletions of certain nucleoporin genes (Siniossoglou et al. 1998), and inactivation of the PAH1 homolog in Caenorhabditis elegans, LPIN-1, results in defects in nuclear envelope disassembly and reassembly (Golden et al. 2009; Gorjanacz and Mattaj 2009).To identify processes that are affected by altered nuclear membrane properties, we screened for pathways that are compromised in spo7Δ cells. We found that SPO7 inactivation strongly influences the SPB. By screening for proteins that could alleviate spo7Δ-induced SPB defects, we uncovered an unexpected inhibitory role for nucleoporins in SPB function, revealing that nuclear pore complexes, or components thereof, act antagonistically to the SPB in the nuclear envelope. Taken together, our findings indicate that the nuclear envelope environment is important for the function of protein complexes and biological processes occurring at the nuclear periphery.  相似文献   
58.
Divalent metal ions are essential for maintaining functional states of the DNA molecule. Their participation in DNA structure is modulated by the base sequence and varies depending on the nature of the ion. The present investigation addresses the interaction of Ca2+ ions with a tandem repeat of two CA dinucleotides, (CA)2/(TG)2. The binding of Ca2+ to the repeat is monitored by nuclear magnetic resonance (NMR) spectroscopy using chemical shift mapping. Parallel experiments monitor binding of Mg2+ ions to the repeat as well as binding of each ion to a DNA duplex in which the (CA)2/(TG)2 repeat is eliminated. The results reveal that the direction and the magnitude of chemical shift changes induced by Ca2+ ions in the NMR spectra of the repeat are different from those induced by Mg2+ ions. The differences between the two cations are significantly diminished by the elimination of the (CA)2/(TG)2 repeat. These findings suggest a specific interaction of Ca2+ ions with the (CA)2/(TG)2 motif. The specificity of the interaction resides in the two A-T base pairs of the repeat, and it involves the major groove of the first A-T base pair and both grooves of the second A-T base pair.  相似文献   
59.
60.
When appended to the epidermal growth factor receptor (EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号