首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1314篇
  免费   112篇
  1426篇
  2023年   8篇
  2022年   18篇
  2021年   32篇
  2020年   21篇
  2019年   25篇
  2018年   34篇
  2017年   42篇
  2016年   51篇
  2015年   56篇
  2014年   63篇
  2013年   93篇
  2012年   101篇
  2011年   88篇
  2010年   49篇
  2009年   44篇
  2008年   57篇
  2007年   63篇
  2006年   54篇
  2005年   63篇
  2004年   46篇
  2003年   56篇
  2002年   45篇
  2001年   18篇
  2000年   14篇
  1999年   14篇
  1998年   10篇
  1996年   7篇
  1995年   7篇
  1993年   7篇
  1992年   10篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   11篇
  1985年   8篇
  1984年   5篇
  1982年   6篇
  1981年   5篇
  1978年   5篇
  1976年   5篇
  1926年   4篇
  1913年   8篇
  1912年   5篇
  1909年   4篇
  1908年   6篇
  1907年   4篇
  1904年   7篇
  1865年   5篇
排序方式: 共有1426条查询结果,搜索用时 0 毫秒
91.
Plasmonics - The plasmon-enhanced photoluminescence of fullerene C60 thin film has been studied to reveal the dependence of the magnitude of plasmonic field in coupled nanosystem monolayer of gold...  相似文献   
92.
93.
94.
The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental 15N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.  相似文献   
95.
96.
97.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   
98.
We report that unprocessed tobacco pectin methylesterase (PME) contains N-terminal pro-sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of pro-sequence fused to GFP were cloned into binary vectors and agroinjected in Nicotiana benthamiana leaves. The PME pro-sequence delivered GFP to the cell wall (CW). We showed that a transient binding of PME TM domain to endoplasmic reticulum membranes occurs upon its transport to CW. The CW targeting was abolished by various deletions in the TM domain, i.e., anchor domain was essential for secretion of GFP to CW. By contrast, even entire deletion of the spacer segment had no influence on GFP targeting.  相似文献   
99.
Interactions of high mobility group (HMG) domain proteins with DNA modified by cisplatin plays a role in mechanisms underlying its antitumor activity. A structural motif recognized by HMG domain proteins on cisplatin-modified DNA is a stable, directional bend of the helix axis. In the present work, bending induced in DNA by major adducts of a novel class of antitumor compounds, represented by the formula [?trans-PtCl(NH(3))(2)?H(2)N(CH(2))(2-6)NH(2)]Cl(2), was investigated. The oligodeoxyribonucleotide duplexes containing various site-specific interstrand cross-links of these bifunctional dinuclear platinum drugs were purified and characterized by Maxam-Gilbert footprinting, chemical probing, and phasing assay. It was demonstrated that the cross-links of the dinuclear compounds bent the helix much less than those of cisplatin. Gel retardation assay revealed very weak recognition of DNA adducts of dinuclear complexes by HMG1 protein. Hence, the mediation of antitumor properties of dinuclear platinum complexes by HMG domain proteins is unlikely so that polynuclear platinum compounds may represent a novel class of platinum anticancer drugs acting by a different mechanism than cisplatin and its analogues. A further understanding of how polynuclear platinum compounds modify DNA and how these modifications are processed in cells should provide a rational basis for the design of new platinum drugs rather than searching for cisplatin analogues.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号