首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   16篇
  国内免费   6篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   13篇
  2010年   11篇
  2009年   3篇
  2008年   10篇
  2007年   11篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1955年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
151.
Prior studies have shown that vitamin D regulation of protein kinase C activity (PKC) in the cell layer of chondrocyte cultures is cell maturation-dependent. In the present study, we examined the membrane distribution of PKC and whether 1α,25-(OH)2D3 and 24R,25-(OH)2D3 can directly regulate enzyme activity in isolated plasma membranes and extracellular matrix vesicles. Matrix vesicle PKC was activated by bryostatin-1 and inhibited by a PKC-specific pseudosubstrate inhibitor peptide. Depletion of membrane PKC activity using isoform-specific anti-PKC antibodies suggested that PKCα is the major isoform in cell layer lysates as well as in plasma membranes isolated from both cell types; PKCζ is the predominant form in matrix vesicles. This was confirmed in Western blots of immunoprecipitates as well as in studies using control peptides to block binding of the isoform specific antibody to the enzyme and using a PKCζ-specific pseudosubstrate inhibitor peptide. The presence of PKCζ in matrix vesicles was further verified by immunoelectron microscopy. Enzyme activity in the matrix vesicle was insensitive to exogenous lipid, whereas that in the plasma membrane required lipid for full activity. 1,25-(OH)2D3 and 24,25-(OH)2D3 inhibited matrix vesicle PKC, but stimulated plasma membrane PKC when added directly to the isolated membrane fractions. PKC activity in the matrix vesicle was calcium-independent, whereas that in the plasma membrane required calcium. Moreover, the vitamin D-sensitive PKC in matrix vesicles was not dependent on calcium, whereas the vitamin D-sensitive enzyme in plasma membranes was calcium-dependent. It is concluded that PKC isoforms are differentially distributed between matrix vesicles and plasma membranes and that enzyme activity is regulated in a membrane-specific manner. This suggests the existence of a nongenomic mechanism whereby the effects of 1,25-(OH)2D3 and 24,25-(OH)2D3 may be mediated via PKC. Further, PKCζ may be important in nongenomic, autocrine signal transduction at sites distal from the cell. © 1996 Wiley-Liss, Inc.  相似文献   
152.
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.  相似文献   
153.
The commissures represent a major neuroarchitectural feature of the central nervous system of insects and vertebrates alike. The adult brain of the grasshopper comprises 72 such commissures, the first of which is established in the protocerebral midbrain by three sets of pioneer cells at around 30% of embryogenesis. These pioneers have been individually identified via cellular, molecular and intracellular dye injection techniques. Their ontogenies, however, remain unclear. The progenitor cells of the protocerebral midbrain are shown via Annulin immunocytochemistry to be compartmentalized, belonging either to the protocerebral hemispheres or the so-called median domain. Serial reconstructions based on bromodeoxyuridine incorporation confirm that their lineages do not intermingle. Dye injection into progenitor cells and progeny confirms this compartmentalization, and reveals that none of the pioneers are associated with a lineage of cells deriving from a protocerebral neuroblast or midline precursor. Immunocytochemical data as well as dye injection into identified pioneers over several developmental stages indicate that they differentiate directly from epithelial cells, but not from classical progenitor cells. That the commissural pioneers of the protocerebrum represent modified epithelial cells involves a different ontogeny to that described for pioneers in the ventral nerve cord, but parallels that of pioneer neurons of the peripheral nervous system.  相似文献   
154.
Boyan BD  Sylvia VL  Dean DD  Schwartz Z 《Steroids》2002,67(6):421-427
1 alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) mediate their effects on chondrocytes and osteoblasts in part through increased activity of protein kinase C (PKC). For both cell types, 1 alpha,25(OH)(2)D(3) exerts its effects primarily on more mature cells within the lineage, whereas 24R,25(OH)(2)D(3) exerts its effects primarily on relatively immature cells. Studies using the rat costochondral cartilage growth plate as a model indicate that the two metabolites increase PKC activity by different mechanisms. In growth zone cells (prehypertrophic/upper hypertrophic cell zones), 1 alpha,25(OH)(2)D(3) causes a rapid increase in PKC that does not involve new gene expression. 1 alpha,25(OH)(2)D(3) binds its membrane receptor (1,25-mVDR), resulting in activation of phospholipase A(2) and the rapid release of arachidonic acid, as well as activation of phosphatidylinositol-specific phospholipase C, resulting in formation of diacylglycerol and inositol-1,4,5-tris phosphate (IP(3)). IP(3) leads to release of intracellular Ca(2+) from the rough endoplasmic reticulum, and together with diacylglycerol, the increased Ca(2+) activates PKC. PKC is then translocated to the plasma membrane, where it initiates a phosphorylation cascade, ultimately phosphorylating the extracellular signal-regulated kinase-1 and -2 (ERK1/2) family of MAP kinases (MAPK). PKC increases are maximal at 9 min, and MAPK increases are maximal at 90 min in these cells. By contrast, 24R,25(OH)(2)D(3) increases PKC through activation of phospholipase D in resting zone cells. Peak production of diacylglycerol via phospholipase D2 is at 90 min, as are peak increases in PKC. Some of the effect is direct on existing plasma membrane PKC, but most is due to new PKC expression; translocation is not involved. Arachidonic acid and its metabolites also play differential roles in the mechanisms, stimulating PKC in growth zone cells and inhibiting PKC in resting zone cells. 24R,25(OH)(2)D(3) decreases phospholipase A(2) activity and prostaglandin production, thereby overcoming this potential inhibitory component, which may account for the delay in the PKC response. Ultimately, ERK1/2 is phosphorylated. PKC-dependent MAPK activity transduces some, but not all, of the physiological responses of each cell type to its respective vitamin D metabolite, suggesting that the membrane receptor(s) and nuclear receptor(s) may function interdependently to regulate proliferation and differentiation of musculoskeletal cells, but different pathways are involved at different stages of phenotypic maturation.  相似文献   
155.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   
156.
森林自然更新过程中地上氮贮量与生物量异速生长的关系   总被引:1,自引:0,他引:1  
研究植物氮贮量与生物量(M)之间的异速生长关系对于开展生态系统碳收支和氮循环研究具有重要意义。目前大量对氮贮量与生物量关系的研究主要集中在个体水平,对于群落水平的氮贮量和生物量之间的异速生长关系,以及群落自然更新过程如何影响该关系仍有待深入研究。利用3种森林类型皆伐后20多年自然更新过程中氮贮量和生物量的数据,采用简化主轴回归方法(reduced major axis,RMA)对不同自然更新阶段的森林氮贮量和生物量之间的异速生长指数和常数进行比较。结果表明:在不同的更新阶段,3种森林类型的植物氮贮量和生物量之间的异速生长指数均接近于1.0(即N∝M0.91-1.07)。异速生长常数随更新时间的增加而逐渐降低,导致3种森林类型整体上氮贮量正比于生物量的0.85次幂。异速生长常数的降低可能是由于在更新过程中叶生物量占整体生物量的比例逐渐下降,导致其对N吸收的生态化学计量制约所造成。  相似文献   
157.
One of the most challenging tasks in wildlife conservation and management is to clarify how spatial variation in land cover due to anthropogenic disturbance influences wildlife demography and long-term viability. To evaluate this, we compared rates of survival and population growth by woodland caribou (Rangifer tarandus caribou) from 2 study sites in northern Ontario, Canada that differed in the degree of anthropogenic disturbance because of commercial logging and road development, resulting in differences in predation risk due to gray wolves (Canis lupus). We used an individual-based model for population viability analysis (PVA) that incorporated adaptive patterns of caribou movement in relation to predation risk and food availability to predict stochastic variation in rates of caribou survival. Field estimates of annual survival rates for adult female caribou in the unlogged ( 0.90) and logged ( 0.76) study sites recorded during 2010–2014 did not differ significantly (P > 0.05) from values predicted by the individual-based PVA model (unlogged: = 0.87; logged: 0.79). Outcomes from the individual-based PVA model and a simpler stage-structured matrix model suggest that substantial differences in adult survival largely due to wolf predation are likely to lead to long-term decline of woodland caribou in the commercially logged landscape, whereas the unlogged landscape should be considerably more capable of sustaining caribou. Estimates of population growth rates (λ) for the 2010–2014 period differed little between the matrix model and the individual-based PVA model for the unlogged (matrix model = 1.01; individual-based model = 0.98) and logged landscape (matrix model = 0.88; individual-based model = 0.89). We applied the spatially explicit PVA model to assess the viability of woodland caribou across 14 woodland caribou ranges in Ontario. Outcomes of these simulations suggest that woodland caribou ranges that have experienced significant levels of commercial forestry activities in the past had annual growth rates <0.89, whereas caribou ranges that had not experienced commercial forestry operations had population growth rates >0.96. These differences were strongly related to regional variation in wolf densities. Our results suggest that increased wolf predation risk due to anthropogenic disturbance is of sufficient magnitude to cause appreciable risk of population decline in woodland caribou in Ontario. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   
158.
159.
Shujun Nie  Bo Wang  Haiping Ding  Haijian Lin  Li Zhang  Qigui Li  Yujiao Wang  Bin Zhang  Anping Liang  Qi Zheng  Hui Wang  Huayang Lv  Kun Zhu  Minghui Jia  Xiaotong Wang  Jiyuan Du  Runtai Zhao  Zhenzhen Jiang  Caina Xia  Zhenghao Qiao  Xiaohu Li  Boyan Liu  Hongbo Zhu  Rong An  Yucui Li  Qian Jiang  Benfang Chen  Hongkai Zhang  Dening Wang  Changxiao Tang  Yang Yuan  Jie Dai  Jing Zhan  Weiqiang He  Xuebo Wang  Jian Shi  Bin Wang  Min Gong  Xiujing He  Peng Li  Li Huang  Hui Li  Chao Pan  Hong Huang  Guangsheng Yuan  Hai Lan  Yongxin Nie  Xinzheng Li  Xiangyu Zhao  Xiansheng Zhang  Guangtang Pan  Qingyu Wu  Fang Xu  Zhiming Zhang 《The Plant journal : for cell and molecular biology》2021,108(1):40-54
Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: “missing a small part” in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.  相似文献   
160.
All eight neuroblasts from the pars intercerebralis of one protocerebral hemisphere whose progeny contribute fibers to the central complex in the embryonic brain of the grasshopper Schistocerca gregaria generate serotonergic cells at stereotypic locations in their lineages. The pattern of dye coupling involving these neuroblasts and their progeny was investigated during embryogenesis by injecting fluorescent dye intracellularly into the neuroblast and/or its progeny in brain slices. The tissue was then processed for anti-serotonin immunohistochemistry. A representative lineage, that of neuroblast 1-3, was selected for detailed study. Stereotypic patterns of dye coupling were observed between progeny of the lineage throughout embryogenesis. Dye injected into the soma of a serotonergic cell consistently spread to a cluster of between five and eight neighboring non-serotonergic cells, but never to other serotonergic cells. Dye injected into a non-serotonergic cell from such a cluster spread to other non-serotonergic cells of the cluster, and to the immediate serotonergic cell, but never to further serotonergic cells. Serotonergic cells tested from different locations within the lineage repeat this pattern of dye coupling. All dye coupling was blocked on addition of an established gap junctional blocker (n-heptanol) to the bathing medium. The lack of coupling among serotonergic cells in the lineage suggests that each, along with its associated cluster of dye-coupled non-serotonergic cells, represents an independent communicating pathway (labeled line) to the developing central complex neuropil. The serotonergic cell may function as the coordinating element in such a projection system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号