首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   12篇
  国内免费   6篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   13篇
  2010年   11篇
  2009年   2篇
  2008年   10篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有193条查询结果,搜索用时 421 毫秒
121.
Severe acute respiratory syndrome (SARS) is a novel human illness caused by a previously unrecognized coronavirus (CoV) termed SARS‐CoV. There are conflicting reports on the animal reservoir of SARS‐CoV. Many of the groups that argue carnivores are the original reservoir of SARS‐CoV use a phylogeny to support their argument. However, the phylogenies in these studies often lack outgroup and rooting criteria necessary to determine the origins of SARS‐CoV. Recently, SARS‐CoV has been isolated from various species of Chiroptera from China (e.g., Rhinolophus sinicus) thus leading to reconsideration of the original reservoir of SARS‐CoV. We evaluated the hypothesis that SARS‐CoV isolated from Chiroptera are the original zoonotic source for SARS‐CoV by sampling SARS‐CoV and non‐SARS‐CoV from diverse hosts including Chiroptera, as well as carnivores, artiodactyls, rodents, birds and humans. Regardless of alignment parameters, optimality criteria, or isolate sampling, the resulting phylogenies clearly show that the SARS‐CoV was transmitted to small carnivores well after the epidemic of SARS in humans that began in late 2002. The SARS‐CoV isolates from small carnivores in Shenzhen markets form a terminal clade that emerged recently from within the radiation of human SARS‐CoV. There is evidence of subsequent exchange of SARS‐CoV between humans and carnivores. In addition SARS‐CoV was transmitted independently from humans to farmed pigs (Sus scrofa). The position of SARS‐CoV isolates from Chiroptera are basal to the SARS‐CoV clade isolated from humans and carnivores. Although sequence data indicate that Chiroptera are a good candidate for the original reservoir of SARS‐CoV, the structural biology of the spike protein of SARS‐CoV isolated from Chiroptera suggests that these viruses are not able to interact with the human variant of the receptor of SARS‐CoV, angiotensin‐converting enzyme 2 (ACE2). In SARS‐CoV we study, both visually and statistically, labile genomic fragments and, putative key mutations of the spike protein that may be associated with host shifts. We display host shifts and candidate mutations on trees projected in virtual globes depicting the spread of SARS‐CoV. These results suggest that more sampling of coronaviruses from diverse hosts, especially Chiroptera, carnivores and primates, will be required to understand the genomic and biochemical evolution of coronaviruses, including SARS‐CoV. © The Willi Hennig Society 2008.  相似文献   
122.
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.  相似文献   
123.
The commissures represent a major neuroarchitectural feature of the central nervous system of insects and vertebrates alike. The adult brain of the grasshopper comprises 72 such commissures, the first of which is established in the protocerebral midbrain by three sets of pioneer cells at around 30% of embryogenesis. These pioneers have been individually identified via cellular, molecular and intracellular dye injection techniques. Their ontogenies, however, remain unclear. The progenitor cells of the protocerebral midbrain are shown via Annulin immunocytochemistry to be compartmentalized, belonging either to the protocerebral hemispheres or the so-called median domain. Serial reconstructions based on bromodeoxyuridine incorporation confirm that their lineages do not intermingle. Dye injection into progenitor cells and progeny confirms this compartmentalization, and reveals that none of the pioneers are associated with a lineage of cells deriving from a protocerebral neuroblast or midline precursor. Immunocytochemical data as well as dye injection into identified pioneers over several developmental stages indicate that they differentiate directly from epithelial cells, but not from classical progenitor cells. That the commissural pioneers of the protocerebrum represent modified epithelial cells involves a different ontogeny to that described for pioneers in the ventral nerve cord, but parallels that of pioneer neurons of the peripheral nervous system.  相似文献   
124.
Three pesticides have been studied for their genotoxicity by the use of assays in the plant Crepis capillaris, aimed at measuring chromosomal aberrations, micronuclei and sister chromosome exchange (SCE). The fungicides Rubigan 12 EC (fenarimol) and Rovral 25 Flo (iprodione) and the insecticide Omite 57 E (propargite) are all widely used nowadays. The aim of our study was to evaluate the genotoxic effects of these pesticides at concentrations corresponding to those applied in agricultural practice. In preliminary experiments we found that these concentrations do not influence cell proliferation and do not inhibit the growth of root meristems. In all experiments formulated commercial products were used. From the results we conclude that the three pesticides did not induce chromosomal aberrations as estimated by metaphase and anaphase analyses. They were also not capable to induce SCE. Rubigan did not induce micronucleus formation even at the highest concentration tested, but Omite and Rovral markedly increased micronucleus formation. The MN response depended on the sampling time and the concentration used, which showed a significant dose-response correlation (r=0.978, P<0.01 and r=0.941, P<0.01, respectively). A greater increase in micronucleus frequency was observed after Rovral treatment, where the highest concentration gave a response 8-10-fold above the negative control. Both pesticides induced high frequencies of lagging chromosomes, even after exposure to the lower test concentrations. The presence of lagging chromosomes is an indication of anti-microtubule activity of the pesticides tested. This effect was more strongly expressed after exposure to the two higher concentrations of Omite and Rovral. In this case a complete destruction of the mitotic spindle was observed, resulting in C-mitoses as well as in numerical aberrations-polyploidy and aneuploidy. The present findings suggest that Omite and Rovral at concentrations comparable to those used in practice can be regarded as potential aneugens.  相似文献   
125.
1alpha,25-(OH)(2)D(3) regulates protein kinase C (PKC) activity in growth zone chondrocytes by stimulating increased phosphatidylinositol-specific phospholipase C (PI-PLC) activity and subsequent production of diacylglycerol (DAG). In contrast, 24R,25-(OH)(2)D(3) regulates PKC activity in resting zone (RC) cells, but PLC does not appear to be involved, suggesting that phospholipase D (PLD) may play a role in DAG production. In the present study, we examined the role of PLD in the physiological response of RC cells to 24R,25-(OH)(2)D(3) and determined the role of phospholipases D, C, and A(2) as well as G-proteins in mediating the effects of vitamin D(3) metabolites on PKC activity in RC and GC cells. Inhibition of PLD with wortmannin or EDS caused a dose-dependent inhibition of basal [3H]-thymidine incorporation by RC cells and further increased the inhibitory effect of 24R,25-(OH)(2)D(3). Wortmannin also inhibited basal alkaline phosphatase activity and [35]-sulfate incorporation and decreased the stimulatory effect of 24R,25-(OH)(2)D(3). This inhibitory effect of wortmannin was not seen in cultures treated with the PI-3-kinase inhibitor LY294002, verifying that wortmannin affected PLD. Wortmannin also inhibited basal PKC activity and partially blocked the stimulatory effect of 24R,25-(OH)(2)D(3) on this enzyme activity. Neither inhibition of PI-PLC with U73122, nor PC-PLC with D609, modulated PKC activity. Wortmannin had no effect on basal PLD in GC cells, nor on 1alpha,25-(OH)(2)D(3)-dependent PKC. Inhibition of PI-PLC blocked the 1alpha,25-(OH)(2)D(3)-dependent increase in PKC activity but inhibition of PC-PLC had no effect. Activation of PLA(2) with melittin inhibited basal and 24R,25-(OH)(2)D(3)-stimulated PKC in RC cells and stimulated basal and 1alpha,25-(OH)(2)D(3)-stimulated PKC in GC cells, but wortmannin had no effect on the melittin-induced changes in either cell type. Pertussis toxin modestly increased the effect of 24R,25-(OH)(2)D(3) on PKC, whereas GDPbetaS had no effect, suggesting that PLD2 is the isoform responsible. This indicates that 1alpha,25-(OH)(2)D(3) regulates PKC in GC cells via PI-PLC and PLA(2), but not PC-PLC or PLD, whereas 24R,25-(OH)(2)D(3) regulates PKC in RC cells via PLD2.  相似文献   
126.
Previous studies have shown that transforming growth factor-beta1 (TGF-beta1) stimulates protein kinase C (PKC) via a mechanism that is independent of phospholipase C or tyrosine kinase, but involves a pertussis toxin-sensitive G-protein. Maximal activation occurs at 12 h and requires new gene expression. To understand the signaling pathways involved, resting zone chondrocytes were incubated with TGF-beta1 and PKC activity was inhibited with chelerythrine, staurosporine or H-7. [(35)S]Sulfate incorporation was inhibited, indicating that PKC mediates the effects of TGF-beta1 on matrix production. However, there was little, if any, effect on TGF-beta1-dependent increases in [(3)H]thymidine incorporation, and TGF-beta1-stimulated alkaline phosphatase was unaffected, indicating that these responses to the growth factor are not regulated via PKC. TGF-beta1 caused a dose-dependent increase in prostaglandin E(2) (PGE(2)) production which was further increased by PKC inhibition. The increase was regulated by TGF-beta1-dependent effects on phospholipase A(2) (PLA(2)). Activation of PLA(2) inhibited TGF-beta1 effects on PKC, and inhibition of PLA(2) activated TGF-beta1-dependent PKC. Exogenous arachidonic acid also inhibited TGF-beta1-dependent increases in PKC. The effects of TGF-beta1 on PKC involve genomic mechanisms, but not regulation of existing membrane-associated enzyme, since no direct effect of the growth factor on plasma membrane or matrix vesicle PKC was observed. These results support the hypothesis that TGF-beta1 modulates its effects on matrix production through PKC, but its effects on alkaline phosphatase are mediated by production of PGE(2) and protein kinase A (PKA). Inhibition of PKA also decreases TGF-beta1-dependent proliferation. We have previously shown that PGE(2) stimulates alkaline phosphatase through its EP2 receptor, whereas EP1 signaling causes a decrease in PKC. Thus, there is cross-talk between the two pathways.  相似文献   
127.
Recent studies have shown that 24R,25-(OH)(2)D(3) mediates its effects on growth plate chondrocytes via membrane receptors. This study examined the roles of phospholipase A(2) (PLA(2)) and cyclooxygenase (Cox) in the mechanism of action of 24R, 25-(OH)(2)D(3) in resting zone chondrocytes in order to determine whether the activity of one or both enzymes provides a regulatory checkpoint in the signaling pathway resulting in increased protein kinase C (PKC) activity. We also determined whether constitutive or inducible Cox is involved. Cultures were incubated with 24R, 25-(OH)(2)D(3) for 90 min to measure PKC or for 24 h to measure physiological responses ([(3)H]-thymidine incorporation, alkaline phosphatase-specific activity, [(35)S]-sulfate incorporation). Based on RT-PCR and Northern blot analysis, resting zone chondrocytes express mRNAs for both Cox-1 and Cox-2. Levels of mRNA for both proteins were unchanged from control levels after a 24-h incubation with 24R,25-(OH)(2)D(3). To examine the role of Cox, the cultures were also treated with resveratrol (a specific inhibitor of Cox-1), NS-398 (a specific inhibitor of Cox-2), or indomethacin (a general Cox inhibitor). Cox-1 inhibition resulted in effects on proliferation, differentiation, and matrix production typical of 24R, 25-(OH)(2)D(3). In contrast, inhibition of Cox-2 had no effect, indicating that 24R,25-(OH)(2)D(3) exerts its effects via Cox-1. Inhibition of Cox-1 also blocked 24R,25-(OH)(2)D(3)-dependent increases in PKC. Activation of PLA(2) with melittin inhibited 24R, 25-(OH)(2)D(3)-dependent stimulation of PKC, and inhibition of PLA(2) with quinacrine stimulated PKC in response to 24R, 25-(OH)(2)D(3). Inclusion of resveratrol reduced the melittin-dependent inhibition of PLA(2) and caused an increase in quinacrine-stimulated PLA(2) activity. Metabolism of arachidonic acid to leukotrienes is not involved in the response to 24R, 25-(OH)(2)D(3) because inhibition of lipoxygenase had no effect. The effect of 24R,25-(OH)(2)D(3) was specific because 24S,25-(OH)(2)D(3), the biologically inactive stereoisomer, failed to elicit a response from the cells. These results support the hypothesis that 24R, 25-(OH)(2)D(3) exerts its effects via more than one signaling pathway and that these pathways are interrelated via the modulation of PLA(2). PKC regulation may occur at multiple stages in the signal transduction cascade.  相似文献   
128.
Growth plate chondrocytes from both male and female rats have nuclear receptors for 17β-estradiol (E2); however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the female cell response. E2 directly affects the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E2 activates PKC in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E2-dependent alkaline phosphatase activity in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of this study were: (1) to examine if PKC mediates the effect of E2 on chondrocyte proliferation, differentiation, and matrix synthesis; and (2) to determine the pathway that mediates the membrane effect of E2 on PKC. Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10−10 to 10−7 M E2 in the presence or absence of the PKC inhibitor chelerythrine, and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [3H]thymidine incorporation were measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E2 in the presence or absence of genistein (an inhibitor of tyrosine kinases), U73122 or D609 (inhibitors of phospholipase C [PLC]), quinacrine (an inhibitor of phospholipase A2 [PLA2]), and melittin (an activator of PLA2). Alkaline phosphatase specific activity and proteoglycan sulfation were increased and [3H]thymidine incorporation was decreased by E2. The effects of E2 on all parameters were blocked by chelerythrine. Treatment of the cultures with E2 produced a significant dose-dependent increase in PKC. U73122 dose-dependently inhibited the activation of PKC in E2-stimulated female chondrocyte cultures. However, the classical receptor antagonist ICI 182780 was unable to block the stimulatory effect of E2 on PKC. Moreover, the classical receptor agonist diethylstilbestrol (DES) had no effect on PKC, nor did it alter the stimulatory effect of E2. Inhibition of tyrosine kinase and PLA2 had no effect on the activation of PKC by E2. The PLA2 activator also had no effect on PKC activation by E2. E2 stimulated PKC activity in membranes isolated from the chondrocytes, demonstrating a direct membrane effect for this steroid hormone. These data indicate that the rapid nongenomic effect of E2 on PKC activity in chondrocytes from female rats is sex-specific and dependent upon a G-protein-coupled phospholipase C.  相似文献   
129.
130.
Phospholipase A2 (PLA2) is pivotal in the rapid membrane-mediated actions of 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Microarray analysis indicated that PLA2 activating protein (PLAA) mRNA is upregulated 6-fold before rat growth plate cells exhibit 1alpha,25(OH)2D3-dependent protein kinase C (PKC) increases, suggesting that it plays an important role in 1alpha,25(OH)2D3's mechanism of action. PLAA mRNA was confirmed in 1alpha,25(OH)2D3-responsive growth zone (prehypertrophic and upper hypertrophic cell zones) chondrocytes by RT-PCR and Northern blot in vitro and by in situ hybridization in vivo. PLAA protein was shown by Western blot and immunohistochemistry. PLAAs role in 1alpha,25(OH)2D3 signaling was evaluated in growth zone cell cultures using PLAA peptide. Arachidonic acid release was increased as was PLA2-specific activity in plasma membranes and matrix vesicles. PKCalpha, but not PKCbeta, PKCepsilon, or PKCzeta, was increased. PLAAs effect was comparable to that of 1alpha,25(OH)2D3 and was additive with 1alpha,25(OH)2D3. PLA2 inhibitors quinacrine and AACOCF3, and cyclooxygenase inhibitor indomethacin blocked the effect of PLAA peptide on PKC, indicating arachidonic acid and its metabolites were involved. This was confirmed using exogenous arachidonic acid. Prostaglandin acted via EP1 based on inhibition by SC19220 and not via EP2 since AH6809 had no effect. Like 1alpha,25(OH)2D3, PLAA peptide also increased activity of phospholipase C-specific activity via beta-1 and beta-3 isoforms, but not delta-1 or gamma-1; the effect of PLAA was via lysophospholipid but not via arachidonic acid. PLAA peptide decreased [3H]-thymidine incorporation to 50% of the decrease caused by 1alpha,25(OH)2D3. In contrast, PLAA peptide increased alkaline phosphatase-specific activity and proteoglycan production in a manner similar to 1alpha,25(OH)2D3. This indicates that PLAA is a specific activator of PLA2 in growth plate chondrocytes, and suggests that it mediates the membrane effect of 1alpha,25(OH)2D3, thereby modulating physiological response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号