首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
31.
32.

Background  

Odorant binding proteins (OBPs) are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins.  相似文献   
33.
The Notch pathway contributes to self-renewal of tumor-initiating cell and inhibition of normal colonic epithelial cell differentiation. Deregulated expression of Notch1 and Jagged1 is observed in colorectal cancer. Hairy/enhancer of split (HES) family, the most characterized targets of Notch, involved in the development of many cancers. In this study, we explored the role of Hes1 in the tumorigenesis of colorectal cancer. Knocking down Hes1 induced CRC cell senescence and decreased the invasion ability, whereas over-expression of Hes1 increased STAT3 phosphorylation activity and up-regulated MMP14 protein level. We further explored the expression of Hes1 in human colorectal cancer and found high Hes1 mRNA expression is associated with poor prognosis in CRC patients. These findings suggest that Hes1 regulates the invasion ability through the STAT3-MMP14 pathway in CRC cells and high Hes1 expression is a predictor of poor prognosis of CRC.  相似文献   
34.
Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in humans. A well-known challenge in the development of a live attenuated RSV vaccine is that interferon (IFN)-mediated antiviral responses are strongly suppressed by RSV nonstructural proteins which, in turn, dampens the subsequent adaptive immune responses. Here, we discovered a novel strategy to enhance innate and adaptive immunity to RSV infection. Specifically, we found that recombinant RSVs deficient in viral RNA N6-methyladenosine (m6A) and RSV grown in m6A methyltransferase (METTL3)-knockdown cells induce higher expression of RIG-I, bind more efficiently to RIG-I, and enhance RIG-I ubiquitination and IRF3 phosphorylation compared to wild-type virion RNA, leading to enhanced type I IFN production. Importantly, these m6A-deficient RSV mutants also induce a stronger IFN response in vivo, are significantly attenuated, induce higher neutralizing antibody and T cell immune responses in mice and provide complete protection against RSV challenge in cotton rats. Collectively, our results demonstrate that inhibition of RSV RNA m6A methylation enhances innate immune responses which in turn promote adaptive immunity.  相似文献   
35.
Metastatic colorectal cancer remains a serious health concern with poor patient survival. Although 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) is the standard therapy for colorectal cancer, it has met with limited success. Recurrence of the tumor after chemotherapy could partly be explained by the enrichment of the chemo-resistant sub-population of cancer stem cells (CSCs) that possess the ability for self-renewal and differentiation into different lineages in the tumor. Therefore development of therapeutic strategies that target CSCs for successful treatment of this malignancy is warranted. The current investigation was undertaken to examine the effectiveness of the combination therapy of dasatinib (a Src inhibitor) and curcumin (a dietary agent with pleiotropic effect) in inhibiting the growth and other properties of carcinogenesis of chemo-resistant colon cancer cells that are enriched in CSCs sub-population. Remnants of spontaneous adenomas from APC Min +/- mice treated with dasatinib and/or curcumin were analyzed for several cancer stem cell markers (ALDH, CD44, CD133 and CD166). Human colon cancer cells HCT-116 (p53 wild type; K-ras mutant) and HT-29 (p53 mutant; K-ras wild type) were used to generate FOLFOX resistant (referred to as CR) cells. The effectiveness of the combination therapy in inhibiting growth, invasive potential and stemness was examined in colon cancer CR cells. The residual tumors from APC Min +/- mice treated with dasatinib and/or curcumin showed 80-90% decrease in the expression of the CSC markers ALDH, CD44, CD133, CD166. The colon cancer CR cells showed a higher expression of CSCs markers, cell invasion potential and ability to form colonospheres, compared to the corresponding parental cells. The combination therapy of dasatinib and curcumin demonstrated synergistic interactions in CR HCT-116 and CR HT-29 cells, as determined by Calcusyn analysis. The combinatorial therapy inhibited cellular growth, invasion and colonosphere formation and also reduced CSC population as evidenced by the decreased expression of CSC specific markers: CD133, CD44, CD166 and ALDH. Our data suggest that the combination therapy of dasatinib and curcumin may be a therapeutic strategy for re-emergence of chemo-resistant colon cancer by targeting CSC sub-population.  相似文献   
36.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   
37.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   
38.
Native cholera toxin (nCT) and the heat-labile toxin 1 (nLT) of enterotoxigenic Escherichia coli are AB5-type enterotoxins. Both nCT and nLT are effective adjuvants that promote mucosal and systemic immunity to protein Ags given by either oral or nasal routes. Previous studies have shown that nCT as mucosal adjuvant requires IL-4 and induces CD4-positive (CD4+) Th2-type responses, while nLT up-regulates Th1 cell production of IFN-gamma and IL-4-independent Th2-type responses. To address the relative importance of the A or B subunits in CD4+ Th cell subset responses, chimeras of CT-A/LT-B and LT-A/CT-B were constructed. Mice nasally immunized with CT-A/LT-B or LT-A/CT-B and the weak immunogen OVA developed OVA-specific, plasma IgG Abs titers similar to those induced by either nCT or nLT. Both CT-A/LT-B and LT-A/CT-B promoted secretory IgA anti-OVA Ab, which established their retention of mucosal adjuvant activity. The CT-A/LT-B chimera, like nLT, induced OVA-specific mucosal and peripheral CD4+ T cells secreting IFN-gamma and IL-4-independent Th2-type responses, with plasma IgG2a anti-OVA Abs. Further, LT-A/CT-B, like nCT, promoted plasma IgG1 more than IgG2a and IgE Abs with OVA-specific CD4+ Th2 cells secreting high levels of IL-4, but not IFN-gamma. The LT-A/CT-B chimera and nCT, but not the CT-A/LT-B chimera or nLT, suppressed IL-12R expression and IFN-gamma production by activated T cells. Our results show that the B subunits of enterotoxin adjuvants regulate IL-12R expression and subsequent Th cell subset responses.  相似文献   
39.
Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β's in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant's, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β1 (spermatocytes and round spermatids) and TGF-β2 (round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β1 and TGF-β2 neutralizing antibody.These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β's. Following secretion, the TGF-β's are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β's may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function.  相似文献   
40.
The highly purified saponin derivative, QS-21, from the Quillaja saponaria Molina tree has been proved to be safe for parenteral administration and represents a potential alternative to bacterial enterotoxin derivatives as a mucosal adjuvant. Here we report that p.o. administration of QS-21 with the vaccine protein tetanus toxoid elicited strong serum IgM and IgG Ab responses, which were only slightly enhanced by further oral immunization. The IgG Ab subclass responses were predominantly IgG1 followed by IgG2b for the 50-microg p.o. dose of QS-21, whereas the 250-microg p.o. dose also induced IgG2a and IgG3 Abs. Low oral QS-21 doses induced transient IgE Ab responses 7 days after the primary immunization, whereas no IgE Ab responses were seen in mice given the higher QS-21 dose. Further, low but not high p.o. QS-21 doses triggered Ag-specific secretory IgA (S-IgA) Ab responses. Th cell responses showed higher IFN-gamma (Th1-type) and lower IL-5, IL-6, and IL-10 (Th2-type) secretion after the high QS-21 p.o. dose than after low doses. Interestingly, the mucosal adjuvant activity of low oral QS-21 doses was diminished in IL-4(-/-) mice, suggesting a role for this cytokine in the initiation of mucosal immunity by oral QS-21. In summary, our results show that oral QS-21 enhances immunity to coadministered Ag and that different doses of QS-21 lead to distinct patterns of cytokine and serum Ab responses. We also show that an early IL-4 response is required for the induction of mucosal immunity by oral QS-21 as adjuvant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号