首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   35篇
  223篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2009年   5篇
  2008年   4篇
  2007年   10篇
  2006年   6篇
  2005年   9篇
  2004年   1篇
  2003年   10篇
  2002年   8篇
  2001年   7篇
  2000年   8篇
  1999年   13篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   12篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1972年   1篇
  1966年   2篇
  1965年   1篇
  1903年   1篇
排序方式: 共有223条查询结果,搜索用时 0 毫秒
181.
Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.  相似文献   
182.
183.
184.
185.

Background

RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression.

Results

Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well.

Conclusion

The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.  相似文献   
186.
M R Thomas  D Brown  S Franzen  S G Boxer 《Biochemistry》2001,40(49):15047-15056
Nitric oxide (NO) binds to the myoglobin (Mb) cavity mutant, H93G, forming either a five- or six-coordinate Fe-NO complex. The H93G mutation eliminates the covalent attachment between the protein and the proximal ligand, allowing NO to bind H93G possibly from the proximal side of the heme rather than the typical diatomic binding pocket on the distal side. The question of whether NO binds on the distal or proximal side was addressed by FTIR spectroscopy of the N-O vibrational frequency nuN(-O) for a set of Mb mutants that perturb the electrostatic environment of the heme pocket. Vibrational spectra of five- and six-coordinate MbNO complexes indicate that nu(N-O) shifts (by as much as 26 cm(-1)) to higher energies for the distal mutants H64V and H64V/H93G relative to the energies of wild-type and H93G MbNO, while nu(N-O) is not affected by the proximal side mutation S92A/H93G. This result suggests that NO binds on the distal side of heme in the five- and six-coordinate MbNO complexes of H93G. Additionally, values of the Fe-NO vibrational frequency nu(Fe-NO) as measured by resonance Raman spectroscopy are reported for the distal and proximal double mutants of H93G. These results suggest that nu(Fe-NO) is not very sensitive to mutations that perturb the electrostatic environment of the heme pocket, leading to the observation that nu(N-O) and nu(Fe-NO) are not quantitatively correlated for the MbNO complexes presented here. Furthermore, nu(N-O) and nu(Fe-NO) do not correlate well with equilibrium constants for imidazole binding to the five-coordinate MbNO complexes of the H93G double mutants. The data presented here do not appear to support the presence of pi-back-bonding or an inverse trans effect of NO binding in Mb mutants that alter the electrostatic environment of the heme pocket.  相似文献   
187.
The cellular contents of the nickel-containing, membrane-bound hydrogenase isoenzymes 1 and 2 (hydrogenases 1 and 2) were analyzed by crossed immunoelectrophoresis. Their expression was differentially influenced by nutritional and genetic factors. Hydrogenase 2 content was enhanced after growth with either hydrogen and fumarate or glycerol and fumarate and correlated reasonably with cellular hydrogen uptake capacity. Hydrogenase 1 content was negligible under the above conditions but was enhanced by exogenous formate. Its expression was greatly reduced in a pfl mutant, which is unable to synthesise formate, but was restored to normal levels when the growth medium included formate. A mutation in the anaerobic regulatory gene, fnr, led to low overall hydrogenase activity and greatly reduced levels of both isoenzymes and abolished the formate enhancement of hydrogenase 1 content. Formate hydrogenlyase activity was similarly reduced in the fnr strain but, in contrast, was restored, as was overall hydrogenase activity, to normal levels by growth in the presence of formate. Low H2 uptake activity was found for the fnr strain under all growth conditions examined. Hydrogenase 1 content, therefore, does not correlate with formate hydrogenlyase activity and its role is unclear. A third hydrogenase isoenzyme, immunologically distinct from hydrogenases 1 and 2, whose expression is enhanced by formate, is present and forms part of the formate hydrogenlyase. We suggest that the effect of the fnr gene product on formate hydrogenlyase expression is mediated via internal formate.  相似文献   
188.
189.
The Escherichia coli mob locus is required for synthesis of active molybdenum cofactor, molybdopterin guanine dinucleotide. The mobB gene is not essential for molybdenum cofactor biosynthesis because a deletion of both mob genes can be fully complemented by just mobA. Inactive nitrate reductase, purified from a mob strain, can be activated in vitro by incubation with protein FA (the mobA gene product), GTP, MgCl2, and a further protein fraction, factor X. Factor X activity is present in strains that lack MobB, indicating that it is not an essential component of factor X, but over-expression of MobB increases the level of factor X. MobB, therefore, can participate in nitrate reductase activation. The narJ protein is not a component of mature nitrate reductase but narJ mutants cannot express active nitrate reductase A. Extracts from narJ strains are unable to support the in vitro activation of purified mob nitrate reductase: they lack factor X activity. Although the mob gene products are necessary for the biosynthesis of all E. coli molybdoenzymes as a result of their requirement for molybdopterin guanine dinucleotide, NarJ action is specific for nitrate reductase A. The inactive nitrate reductase A derivative in a narJ strain can be activated in vitro following incubation with cell extracts containing the narJ protein. NarJ acts to activate nitrate reductase after molybdenum cofactor biosynthesis is complete.  相似文献   
190.
Crigler-Najjar syndrome type 1 (CN-1) is a familial disorder characterized by severe unconjugated hyperbilirubinemia and jaundice and leads to kernicterus, neurological damage, and eventual death unless treated with liver transplantation. Previous reports identified mutations in the UGT1 gene complex to be the cause of the disease. The total absence of all phenol/bilirubin UGT proteins and their activities in liver homogenate of a CN-1 patient was determined by enzymological and immunochemical analysis. A novel homozygous nonsense mutation (CGA-->TGA) was identified in the patient by the combined techniques of PCR and direct sequencing. This mutation was located in exon 3 of the constant region in the gene complex which is common to all phenol and bilirubin UGTs. The segregation of the mutation in the patient's family was analyzed and confirmed the recessive nature of the disease. Newly developed intragenic polymorphic probes (UGT1* 4 and UGT-Const) were used on Southern blots of MspI-digested genomic DNA of the patient and his family. The segregation of individual alleles within the family was observed from haplotypes generated. Comparison of the segregation of haplotypes with the mutation for the patient and his family revealed the allele identified by the A1-B1-C2 haplotype to be carrying the mutation. The risk of recombination occurring is negligible, because of the intragenic nature of the probes. This study demonstrates the potential usefulness of these probes in carrier detection and prenatal/presymptomatic diagnosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号