首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   32篇
  2023年   3篇
  2021年   4篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   10篇
  2013年   12篇
  2012年   18篇
  2011年   12篇
  2010年   6篇
  2009年   2篇
  2008年   13篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   15篇
  2003年   10篇
  2002年   10篇
  2001年   23篇
  2000年   13篇
  1999年   10篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   7篇
  1982年   4篇
  1978年   4篇
  1976年   6篇
  1974年   3篇
  1964年   1篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
  1949年   1篇
  1940年   1篇
  1912年   1篇
  1889年   1篇
  1879年   2篇
排序方式: 共有316条查询结果,搜索用时 187 毫秒
91.
92.
Dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality and a leading cause of cardiac transplantation worldwide. Multiple loci and three genes encoding cardiac actin, desmin, and lamin A/C have been described for autosomal dominant DCM. Using recombination analysis, we have narrowed the 10q21-q23 locus to a region of approximately 4.1 cM. In addition, we have constructed a BAC contig, composed of 199 clones, which was used to develop a high-resolution physical map that contains the DCM critical region (approximately 3.9 Mb long). Seven genes, including ANX11, PPIF, DLG5, RPC155, RPS24, SFTPA1, and KCNMA1, have been mapped to the region of interest. RPC155, RPS24, SFTPA1, and KCNMA1 were excluded from further analysis based on their known functions and tissue-specific expression patterns. Mutational analysis of ANX11, DLG5, and PPIF revealed no disease-associated mutations. Multiple ESTs have also been mapped to the critical region.  相似文献   
93.
Lim EK  Jackson RG  Bowles DJ 《FEBS letters》2005,579(13):2802-2806
This study describes the substrate recognition profile of UGT72E1, an UDP-glucose:glycosyltransferase of Arabidopsis thaliana that is the third member of a branch of glycosyltransferases, capable of conjugating lignin monomers and related metabolites. The data show that UGT72E1, in contrast to the two closely related UGTs 72E2 and 72E3, is specific for sinapyl and coniferyl aldehydes. The biochemical properties of UGT72E1 are characterised, and are compared with that of UGT72E2, which is capable of glycosylating the aldehydes as well as coniferyl and sinapyl alcohols.  相似文献   
94.
95.
The c-jun gene is a major regulator of proliferative and stress responses of both normal and transformed cells. In general, during immortalization/transformation c-jun cooperates with oncogenic signals rather than acting as an oncogene itself. Here we report a novel example of this cooperation, the requirement for c-jun to sustain expression of the matrix metalloproteinase-2 (MMP-2) gene in cells immortalized by SV40 large T-antigen (TAg). MMP-2 encodes a type IV collagenase that is secreted by cells within normal and tumor microenvironments. We used wild-type and c-jun null primary and TAg-immortalized mouse embryonic fibroblasts (mEFs) to investigate the importance of c-jun for the regulation of this activity, and observed that c-jun is essential for MMP-2 expression in immortalized but not primary mEFs. This finding directly demonstrates a cooperative interaction of c-jun with an oncogene, and suggests that TAg dependent immortalization/transformation may require other c-Jun/AP-1-dependent genes.  相似文献   
96.
Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.  相似文献   
97.
Progesterone levels and vaginal smears were monitored to detect estrus and formation of corpora lutea during the first year of a 4-year study of reproduction in captive wolverines. No evidence of spontaneous ovulation was detected during the first year, and most females did not attain complete vaginal cornification. Follicle stimulating hormone was used in subsequent years to induce estrus in several females, and human chorionic gonadotropin (hCG) was used to induce ovulation. Females treated with hCG were artificially inseminated with fresh wolverine semen. Prolonged elevation of serum progesterone above 1 ng/ml was only observed in females that received hCG. The profiles and duration of the progesterone secretory pattern of these females closely resembled that of other mustelids that exhibit a prolonged delay of implantation. Progesterone remained below 1 ng/ml throughout the year in all females that did not receive hCG. No kits were produced. The data suggest that ovulation in this species is normally induced by coitus, and that pseudopregnancy can occur, lasting as long as pregnancy. © 1993 Wiley-Liss, Inc.  相似文献   
98.
How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.  相似文献   
99.
100.
Dendritic cells (DCs) can be considered sentinels of the immune system which play a critical role in its initiation and response to infection1. Detection of pathogenic antigen by naïve DCs is through pattern recognition receptors (PRRs) which are able to recognize specific conserved structures referred to as pathogen-associated molecular patterns (PAMPS). Detection of PAMPs by DCs triggers an intracellular signaling cascade resulting in their activation and transformation to mature DCs. This process is typically characterized by production of type 1 interferon along with other proinflammatory cytokines, upregulation of cell surface markers such as MHCII and CD86 and migration of the mature DC to draining lymph nodes, where interaction with T cells initiates the adaptive immune response2,3. Thus, DCs link the innate and adaptive immune systems. The ability to dissect the molecular networks underlying DC response to various pathogens is crucial to a better understanding of the regulation of these signaling pathways and their induced genes. It should also help facilitate the development of DC-based vaccines against infectious diseases and tumors. However, this line of research has been severely impeded by the difficulty of transfecting primary DCs4.Virus transduction methods, such as the lentiviral system, are typically used, but carry many limitations such as complexity and bio-hazardous risk (with the associated costs)5,6,7,8. Additionally, the delivery of viral gene products increases the immunogenicity of those transduced DCs9,10,11,12. Electroporation has been used with mixed results13,14,15, but we are the first to report the use of a high-throughput transfection protocol and conclusively demonstrate its utility.In this report we summarize an optimized commercial protocol for high-throughput transfection of human primary DCs, with limited cell toxicity and an absence of DC maturation16. Transfection efficiency (of GFP plasmid) and cell viability were more than 50% and 70% respectively. FACS analysis established the absence of increase in expression of the maturation markers CD86 and MHCII in transfected cells, while qRT-PCR demonstrated no upregulation of IFNβ. Using this electroporation protocol, we provide evidence for successful transfection of DCs with siRNA and effective knock down of targeted gene RIG-I, a key viral recognition receptor16,17, at both the mRNA and protein levels. Download video file.(52M, mov)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号