首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   43篇
  2023年   4篇
  2021年   5篇
  2019年   14篇
  2017年   5篇
  2016年   13篇
  2015年   15篇
  2014年   13篇
  2013年   16篇
  2012年   21篇
  2011年   15篇
  2010年   10篇
  2009年   11篇
  2008年   15篇
  2007年   11篇
  2006年   13篇
  2005年   16篇
  2004年   18篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1993年   3篇
  1992年   4篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1974年   3篇
  1973年   4篇
  1966年   3篇
  1965年   3篇
  1962年   4篇
  1958年   3篇
  1950年   6篇
  1948年   5篇
  1946年   3篇
  1945年   3篇
  1939年   3篇
  1935年   3篇
  1933年   3篇
排序方式: 共有421条查询结果,搜索用时 375 毫秒
41.
Samples from the field and laboratory exposure to Mikrocytos mackini (a tiny protistan parasite of unknown taxonomic affiliation) confirmed that juvenile Pacific oysters (Crassostrea gigas) are susceptible to infection and the resulting disease. In the laboratory bath exposure experiment, a prevalence of infection approaching 100% and mortalities were observed in the small oysters (about 18 mm in shell length). However, in the same laboratory exposure experiment, similar aged geoduck clams (Panope abrupta, about 8mm in shell length) were resistant to infection. The main route of infection in the oysters appeared to be via the digestive tract and possibly the gills where the parasite multiplied within host cells. Other tissues such as the adductor muscle and vesicular connective tissue were subsequently colonized. Although the infection resulted in the mortality of some oysters, others appeared to overcome the disease.  相似文献   
42.
Equine mitochondrial DNA (mtDNA) phylogeny reconstruction reveals a complex pattern of variation unlike that seen in other large domesticates. It is likely that this pattern reflects a process of multiple and repeated, although not necessarily independent, domestication events. Until now, no clear geographic affiliation of clades has been apparent. In this study, amova analyses have revealed a significant non-random distribution of the diversity among equine populations when seven newly sequenced Eurasian populations were examined in the context of previously published sequences. The association of Eastern mtDNA types in haplogroup F was highly significant using Fisher's exact test of independence (P = 0.00000). For the first time, clear biogeographic partitioning has been detected in equine mtDNA sequence.  相似文献   
43.
Equine mitochondrial DNA sequence variation was investigated in three indigenous Irish horse populations (Irish Draught Horse, Kerry Bog Pony and Connemara Pony) and, for context, in 69 other horse populations. There was no evidence of Irish Draught Horse or Connemara Pony sequence clustering, although the majority of Irish Draught Horse sequences (47%) were assigned to haplogroup D. Conversely, 31% of the Kerry Bog Pony sequences were assigned to the rare haplogroup E. In addition to the extant population analyses, ancient DNA sequences were generated from three out of four Irish archaeological specimens, all of which were assigned to haplogroup A.  相似文献   
44.
45.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   
46.
The rising costs of bioprocess research and development emphasize the need for high-throughput, low-cost alternatives to bench-scale bioreactors for process development. In particular, there is a need for platforms that can go beyond simple batch growth of the organism of interest to include more advanced monitoring, control, and operation schemes such as fed-batch or continuous. We have developed a 1-mL microbioreactor capable of monitoring and control of dissolved oxygen, pH, and temperature. Optical density can also be measured online for continuous monitoring of cell growth. To test our microbioreactor platform, we used production of a plasmid DNA vaccine vector (pVAX1-GFP) in Escherichia coli via a fed-batch temperature-inducible process as a model system. We demonstrated that our platform can accurately predict growth, glycerol and acetate concentrations, as well as plasmid copy number and quality obtained in a bench-scale bioreactor. The predictive abilities of the micro-scale system were robust over a range of feed rates as long as key process parameters, such as dissolved oxygen, were kept constant across scales. We have highlighted plasmid DNA production as a potential application for our microbioreactor, but the device has broad utility for microbial process development in other industries as well.  相似文献   
47.
ABSTRACT: BACKGROUND: There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. RESULTS: In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30degreesC to 42degreesC. However, using Escherichia coli DH5alpha as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30degreesC, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42degreesC. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5alpha[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42degreesC. CONCLUSIONS: Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.  相似文献   
48.
We examined the intraindividual variation present in the first ribosomal internal transcribed spacer (ITS1) of Anopheles farauti to determine the level of divergence among populations for this important malarial vector. We isolated 187 clones from 70 individuals and found regional variation among four internal tandem repeats. The data were partitioned prior to analysis given the presence of a paralogous ITS2 sequence, called the 5'-subrepeat, inserted in the ITS1 of most clones. A high level of homogenization and population differentiation was observed for this repeat, which indicates a higher rate of turnover relative to the adjacent 'core' region. Bayesian analysis was performed using several substitutional models on both a combined and a partitioned data set. On the whole, the ITS1 phylogeny and geographic origin of the samples appear to be congruent. Some interesting exceptions indicate the spread of variant repeats between populations and the retention of ancestral polymorphism. Our data clearly demonstrate concerted evolution at the intraspecific level despite intraindividual variation and a complex internal repeat structure from a species that occupies a continuous coastal distribution. A high rate of genomic turnover in combination with a high level of sequence divergence appears to be a major factor leading to its concerted evolution within these populations.  相似文献   
49.
Calmodulin-dependent protein kinase II (CaMKII) is known to play a key role during induction of long-term potentiation (LTP). Given the dependence of LTP on the frequency of synaptic activation, several previous modeling efforts have proposed that biochemical properties of CaMKII itself might be in part responsible for this dependence. Recently, De Koninck and Schulman (1998) have provided direct experimental evidence that the enzyme itself is sensitive to the frequency of Ca2+ activation. Here we demonstrate the ability of a detailed biophysical model constructed solely on enzyme kinetics of purified proteins to generate the frequency sensitivity demonstrated by De Koninck and Schulman. Quantitative analysis of the model reveals that this frequency sensitivity is provided by a mechanism different from those previously postulated. This analysis leads to specific predictions concerning the effects of mutations on this process. We further employ the model to examine the asymptotic behavior of CaMKII-phosphatase system during longer simulated periods of stimulation. The analyses of the model suggest that the transient and asymptotic frequency sensitivity of this enzyme are dependent on different biochemical mechanisms. These results may be applicable to Ca2+/calmodulin signaling pathways in general.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号