全文获取类型
收费全文 | 120篇 |
免费 | 18篇 |
专业分类
138篇 |
出版年
2019年 | 1篇 |
2018年 | 1篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2009年 | 4篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2005年 | 9篇 |
2004年 | 10篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 7篇 |
1987年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1980年 | 7篇 |
1979年 | 1篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1973年 | 3篇 |
1972年 | 3篇 |
1971年 | 3篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 3篇 |
1966年 | 1篇 |
1912年 | 1篇 |
1911年 | 2篇 |
排序方式: 共有138条查询结果,搜索用时 15 毫秒
11.
Enrique Cadenas Juan José Poderoso Fernando Antunes Alberto Boveris 《Free radical research》2013,47(6):747-756
The regulatory role that mitochondria play in cell dysfunction and cell-death pathways involves the concept of a complex and multisite regulation of cellular respiration and energy production signaled by cellular and intercellular messengers. Hence, the role of nitric oxide, as a physiological regulator acting directly on the mitochondrial respiratory chain acquires further relevance. This article provides a survey of the major regulatory roles of nitric oxide on mitochondrial functions as an expression of two major metabolic pathways for nitric oxide consumption: a reductive pathway, involving mitochondrial ubiquinol and yielding nitroxyl anion and an oxidative pathway involving superoxide anion and yielding peroxynitrite. The modulation of the decay pathways for nitrogen-and oxygen-centered radicals is further analyzed as a function of the redox transitions of mitochondrial ubiquinol. The interplay among these redox processes and its implications for mitochondrial function is discussed in terms of the mitochondrial steady-state levels (and gradients) of nitric oxide and superoxide anion. 相似文献
12.
AB Zarafi AM Emechebe AD Akpa O Alabi 《Archives Of Phytopathology And Plant Protection》2013,46(4):261-268
Pearl millet downy mildew (DM) incidence, severity and yield losses of two pearl millet varieties (local and improved) due to the disease were determined in the field. Significant differences in the disease incidence and severity were recorded in the plots sown with metalaxyl-treated seeds and those sown with non-treated seeds, indicating the efficacy of the fungicide on the fungus. Yield losses due to non-treatment of seeds with metalaxyl was 40.88 and 45.39% in a local variety and 43.00 and 18.60% in an improved variety in the 2000 and 2001 cropping seasons respectively. Significant differences between plots sown with metalaxyl-treated and those sown with non-treated seeds were obtained for other yield components such as 1000-grains weight, panicle length and weight. 相似文献
13.
Navarro A Gómez C Sánchez-Pino MJ González H Bández MJ Boveris AD Boveris A 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,289(5):R1392-R1399
Male mice receiving vitamin E (5.0 g alpha-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 +/- 4 wk to 85 +/- 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The alpha-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respectively. Vitamin E-supplemented male mice showed a better performance in the tight-rope (neuromuscular function) and the T-maze (exploratory activity) tests with improvements of 9-24% at 52 wk and of 28-45% at 78 wk. The rates of electron transfer in brain mitochondria, determined as state 3 oxygen uptake and as NADH-cytochrome c reductase and cytochrome oxidase activities, were 16-25% and 35-38% diminished at 52-78 wk. These losses of mitochondrial function were ameliorated by vitamin E supplementation by 37-56% and by 60-66% at the two time points considered. The activities of mitochondrial nitric oxide synthase and Mn-SOD decreased 28-67% upon aging and these effects were partially (41-68%) prevented by vitamin E treatment. Liver mitochondrial activities showed similar effects of aging and of vitamin E supplementation, although less marked. Brain mitochondrial enzymatic activities correlated negatively with the mitochondrial content of protein and lipid oxidation products (r2 = 0.58-0.99, P < 0.01), and the rates of respiration and of complex I and IV activities correlated positively (r2 = 0.74-0.80, P < 0.01) with success in the behavioral tests and with maximal life span. 相似文献
14.
15.
Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine 总被引:4,自引:0,他引:4
Lores-Arnaiz S D'Amico G Czerniczyniec A Bustamante J Boveris A 《Archives of biochemistry and biophysics》2004,430(2):170-177
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo. 相似文献
16.
Fellet AL Balaszczuk AM Arranz C López-Costa JJ Boveris A Bustamante J 《American journal of physiology. Heart and circulatory physiology》2006,291(3):H1246-H1254
In autonomic-blocked rats treated with NG-nitro-L-arginine methyl ester (L-NAME, 7.5 mg/kg), heart rate increased 18% and mean arterial pressure increased 48%. Thyroidectomy, along with autonomic blockade, hampered the chronotropic response but did not modify the effect on blood pressure. After 150 min of autonomic blockade, the experimental end point, total nitric oxide (NO) production by heart NO synthases (NOS) decreased 61%: from 54 to 21 nmol NO.min-1.g heart-1. Mitochondrial NOS (mtNOS) and sarcoplasmic reticulum endothelial NOS activities decreased 74% and 52%, respectively. Mitochondria isolated from whole heart showed a well-coupled oxidative phosphorylation with high respiratory control and ADP-to-O ratios, decreased mtNOS activity (55-60%), and decreased mtNOS protein expression (70%). Immunohistochemistry with anti-inducible NOS antibody linked to gold particles localized mtNOS at the inner mitochondrial membranes. Histochemical right atrial NOS (NADPH-diaphorase) decreased 55% after heart denervation. The effects of autonomic denervation on the NO system were partially prevented by thyroidectomy performed simultaneously with autonomic blockade. Western blot analysis indicated a very rapid mtNOS protein turnover (half time=120 min) with a process of protein expression that was upregulated by thyroidectomy and a degradation process that was downregulated by the autonomic nervous system. The observations suggest that NO-mediated pathways contribute to pacemaker heart activity, likely through the NO steady-state levels in the right atrium and the whole heart. 相似文献
17.
The mitochondrial energy transduction system and the aging process 总被引:13,自引:0,他引:13
Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H+ impermeability and F1-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O2 uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H2O2 and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals. oxidative damage; survival; complexes I and IV; nitric oxide synthase 相似文献
18.
19.
A D Boveris A Galatro L Sambrotta R Ricco A A Gurni S Puntarulo 《Phytochemistry》2001,58(7):1097-1105
Soybean cotyledons directly exposed to UV-C (190-280 nm) contained a colored pigment in those areas of the epidermis directly exposed to UV-C. Ethanolic extracts from UV-C irradiated cotyledons showed a significant peak at 532 nm at pH=10, but not seen at pH=6, successive changes in pH were accompanied by reversible changes in the spectra. The identity of the pigment isolated from soybean cotyledons was established as apigeninidin by comparing the features of standard of a apigeninidin (from sorghum) previously characterized by FAB-MS, UV, HPLC, 1H NMR, and IR spectroscopy. To characterize antioxidant activity of this compound, its ability to scavenge radical species in vitro was tested. In the concentration range tested (up to 200 microg ml (-1)), apigeninidin did not show any scavenger activity towards hydroxyl radical, quinones or NO. However, ascorbyl radical and lipid radicals were effectively quenched in a dose-dependent manner. Overall, UV-C radiation triggers molecular signals that lead in soybean cotyledons to the synthesis and accumulation of an antioxidant pigment, apigeninidin, that shows scavenger activity against ascorbyl and lipid radicals in in vitro studies. 相似文献
20.
Reduction of mitochondrial components by durohydroquinone 总被引:7,自引:0,他引:7