首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   41篇
  2021年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   19篇
  2014年   16篇
  2013年   14篇
  2012年   28篇
  2011年   20篇
  2010年   16篇
  2009年   13篇
  2008年   19篇
  2007年   20篇
  2006年   18篇
  2005年   17篇
  2004年   23篇
  2003年   16篇
  2002年   18篇
  2001年   16篇
  2000年   11篇
  1999年   9篇
  1998年   17篇
  1997年   11篇
  1996年   9篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   13篇
  1989年   10篇
  1988年   6篇
  1987年   11篇
  1986年   6篇
  1985年   14篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
  1977年   10篇
  1976年   7篇
  1975年   4篇
  1974年   3篇
  1972年   3篇
  1969年   2篇
  1967年   2篇
  1966年   3篇
排序方式: 共有528条查询结果,搜索用时 15 毫秒
31.
32.
Continuous exposure of cells to neurotransmitter or hormone agonists often results in a rapid desensitization of the cellular response. For example, pretreatment of Chinese hamster fibroblasts (CHW cells) expressing beta 2-adrenergic receptors (beta 2AR) with low (nanomolar) concentrations of isoproterenol, a beta-adrenergic agonist, causes decreases in the sensitivity of the cellular adenylyl cyclase response to the agonist, without changing the maximal responsiveness. In contrast, exposure of CHW cells to high (micromolar) concentrations of isoproterenol results in decreases in both sensitivity and the maximal responsiveness to agonist. To explore the role(s) of receptor phosphorylation in these processes, we expressed in CHW cells three mutant beta 2AR genes encoding receptors lacking putative phosphorylation sites for the cAMP-dependent protein kinase A and/or the cAMP-independent beta 2AR kinase. Using these mutants we found that exposure of cells to low concentrations of agonist appears to preferentially induce phosphorylation at protein kinase A sites. This phosphorylation correlates with the decreased sensitivity to agonist stimulation of the adenylyl cyclase response. At higher agonist concentrations phosphorylation on both the beta 2AR kinase and protein kinase A sites occurs, and only then is the maximal cyclase responsiveness elicited by agonist reduced. We conclude that low or high concentrations of agonist elicit phosphorylation of beta 2AR on distinct domains, with different implications for the functional coupling of the receptors with effector molecules.  相似文献   
33.
Environmental Biology of Fishes - Cortisol is recognized as a physiological indicator of stress in fish. However, this hormone is typically measured in plasma samples. In this study, cortisol...  相似文献   
34.
Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development.  相似文献   
35.
Recent developments of molecular tools have revolutionized our knowledge of microbial biodiversity by allowing detailed exploration of its different facets and generating unprecedented amount of data. One key issue with such large datasets is the development of diversity measures that cope with different data outputs and allow comparison of biodiversity across different scales. Diversity has indeed three components: local (α), regional (γ) and the overall difference between local communities (β). Current measures of microbial diversity, derived from several approaches, provide complementary but different views. They only capture the β component of diversity, compare communities in a pairwise way, consider all species as equivalent or lack a mathematically explicit relationship among the α, β and γ components. We propose a unified quantitative framework based on the Rao quadratic entropy, to obtain an additive decomposition of diversity (γ = α + β), so the three components can be compared, and that integrate the relationship (phylogenetic or functional) among Microbial Diversity Units that compose a microbial community. We show how this framework is adapted to all types of molecular data, and we highlight crucial issues in microbial ecology that would benefit from this framework and propose ready‐to‐use R‐functions to easily set up our approach.  相似文献   
36.
Ants are powerful model systems for the study of cooperation and sociality. In this review, we discuss how recent advances in ant genomics have contributed to our understanding of the evolution and organization of insect societies at the molecular level.  相似文献   
37.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
38.
39.
40.
Connexin40 is a gap junction protein involved in cell communication in the heart and other tissues. The assignments of an important Connexin40 regulatory domain, the carboxyl terminus, will aid in identifying the types of inter- and intramolecular interactions that affect channel activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号