首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   75篇
  868篇
  2022年   13篇
  2020年   13篇
  2019年   7篇
  2016年   8篇
  2015年   24篇
  2014年   21篇
  2013年   34篇
  2012年   33篇
  2011年   28篇
  2010年   26篇
  2009年   28篇
  2008年   23篇
  2007年   46篇
  2006年   32篇
  2005年   22篇
  2004年   16篇
  2003年   16篇
  2002年   13篇
  2001年   20篇
  2000年   20篇
  1999年   22篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1993年   7篇
  1992年   12篇
  1991年   9篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1983年   9篇
  1979年   8篇
  1978年   9篇
  1977年   7篇
  1974年   10篇
  1973年   7篇
  1972年   7篇
  1969年   7篇
  1968年   6篇
  1967年   8篇
  1966年   10篇
  1965年   16篇
  1964年   6篇
  1956年   5篇
  1948年   7篇
  1934年   7篇
  1932年   5篇
  1923年   5篇
排序方式: 共有868条查询结果,搜索用时 17 毫秒
21.
A total of 2,245 extracts, derived from 449 marine fungi cultivated in five types of media, were screened against the C4 plant enzyme pyruvate phosphate dikinase (PPDK), a potential herbicide target. Extracts from several fungal isolates selectively inhibited PPDK. Bioassay-guided fractionation of one isolate led to the isolation of the known compound unguinol, which inhibited PPDK with a 50% inhibitory concentration of 42.3 ± 0.8 μM. Further kinetic analysis revealed that unguinol was a mixed noncompetitive inhibitor of PPDK with respect to the substrates pyruvate and ATP and an uncompetitive inhibitor of PPDK with respect to phosphate. Unguinol had deleterious effects on a model C4 plant but no effect on a model C3 plant. These results indicate that unguinol inhibits PPDK via a novel mechanism of action which also translates to an herbicidal effect on whole plants.  相似文献   
22.
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.  相似文献   
23.
Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.  相似文献   
24.
Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem''s response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.Alkanes are saturated hydrocarbons that are widespread in marine environments due to a variety of anthropogenic and natural sources. They constitute the major fraction of hydrocarbon components found in crude oils and refined petroleum and are also produced by various marine organisms (e.g., zooplankton) as cellular components (2, 44). Alkanes are considered as pollutants, with short-chained alkanes acting as solvents toward cellular membranes and other lipid components (34) while longer-chained alkanes may contribute to the formation of oil films and slicks that may limit nutrient and oxygen exchange (21). Importantly, alkanes also serve as important carbon and energy sources for some microorganisms. In marine environments, alkanes succumb to various removal and dispersal processes such as dissolution, photochemical oxidation, evaporation, adsorption, and sedimentation. However, the greatest removal pathway for alkanes in marine sediments is via biodegradation by bacteria (13). This mechanism also mediates the transfer of oil-derived carbon to higher trophic levels (28, 37), and therefore these bacteria have an important role in carbon cycling in environments subject to long-term inputs of hydrocarbons such as marine seep-associated ecosystems. Alkane biodegradation is mediated by a diverse range of marine bacteria using various electron acceptors although degradation generally proceeds at greater rates under aerobic conditions than under anaerobic conditions, where the process is relatively slow (8, 26).In the presence of oxygen, well-characterized alkane oxidation pathways are initiated by an activation step whereby oxygen is introduced to the alkane substrate before further catabolic steps can proceed. A number of oxygen-dependent alkane hydroxylase enzyme systems have been discovered that catalyze this initial step including the soluble di-iron methane monooxygenases and the membrane-bound copper-containing methane monooxygenases, both of which act upon short-chain alkanes (i.e., C1 up to C8). Integral membrane non-heme iron alkane hydroxylases (the alk system) that are related to the well-characterized AlkB of Pseudomonas putida GPo1 (also known as Pseudomonas oleovorans TF4-1 I) act upon longer-chain alkanes (i.e., C5 to C16) (40). Other systems exist that include alkane-hydroxylating cytochrome P450 enzymes in addition to other enzyme systems that are known to exist based purely on chemical analyses of metabolites formed during alkane degradation experiments (22, 25, 29); however, knowledge pertaining to the enzymes and genes involved as well as their importance in the environment is limited. Only recently have genes involved in the degradation of long-chain alkanes (e.g., C32 and C36) been identified in Acinetobacter sp. strain DSM 17874 (39) though there is no information about the presence or importance of such enzymes in the environment.Although various chemical and microbiological aspects of petroleum oil and alkane biodegradation in marine systems have been relatively well studied, there is a general lack of knowledge concerning the diversity or abundance of the functional genes involved. The biochemical and molecular aspects of alkB genes and the enzymes they encode have been relatively well studied, and this has enabled the development of molecular tools for the study of alkB genes in the environment (19). Elevated levels of hydrocarbons or the introduction of hydrocarbons to environments has been shown to increase gene copy numbers, indicating the potential use of alkB genes as bioindicators of oil pollution and/or biodegradation (16, 33, 36, 43). However, to date only one study has used culture-independent molecular methods to examine the diversity of alkB genes in a marine environment (20), and no studies have examined hydrocarbon-degrading genes where natural hydrocarbon seepage occurs.In this study, the diversity and relative abundance of alkB genes were examined in sediments of the Timor Sea, a region where natural seeps are sources of widespread petroleum hydrocarbons. It was hypothesized that (i) novel alkB genes may exist in this unique tropical marine environment, (ii) that variations in gene diversity would be found in sediments with different hydrocarbon levels, and (iii) that the abundance of certain alkB gene types may reflect the levels of measured hydrocarbons in sediments, and therefore this assay could be used as a complementary tool for monitoring petroleum inputs into sediments of the Timor Sea.  相似文献   
25.
Placental malaria is a significant cause of all malaria-related deaths globally for which no drugs have been developed to specifically disrupt its pathogenesis. To facilitate the discovery of antimalarial drugs targeting the cytoadherence process of Plasmodium-infected erythrocytes in the placenta microvasculature, we have developed an automated image-based assay for high-throughput screening for potent cytoadherence inhibitors in vitro. Parasitized erythrocytes were drug-treated for 24 h and then allowed to adhere on a monolayer of placental BeWo cells prior to red blood cell staining with glycophorin A antibodies. Upon image-acquisition, drug effects were quantified as the proportion of treated parasitized erythrocytes to BeWo cells compared to the binding of untreated iRBCs. We confirmed the reliability of this new assay by comparing the binding ratios of CSA- and CD36-panned parasites on the placental BeWo cells, and by quantifying the effects of chondroitin sulfate A, brefeldin A, and artemisinin on the binding. By simultaneously examining the drug effects on parasite viability, we could discriminate between cytoadherence-specific inhibitors and other schizonticidal compounds. Taken together, our data establish that the developed assay is highly suitable for drug studies targeting placental malaria, and will facilitate the discovery and rapid development of new therapies against malaria.  相似文献   
26.
Summary Strong reactivity for urate oxidase was found in the liver parenchymal cells of the prosimians (i.e. the tree shrew, slow loris, potto and galago) as well as those of lower mammals. The liver parenchymal cells of the platyrrhine monkeys (i.e. the marmoset, owl monkey, squirrel monkey, capuchin monkey and spider monkey) were moderately positive. There was no preferential distribution of granular reaction products in zones of liver lobules of these species. The prosimians and platyrrhine monkeys seem to be uricolytic as lower mammals are. On the other hand, the old world monkeys (i.e. Java monkey and rhesus monkey) and the apes (i.e. the orang-utan and chimpanzee) were histochemically negative.  相似文献   
27.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   
28.
29.
Sib‐mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small‐scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate‐choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib‐mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib‐mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib‐mating avoidance. In addition, we detected a weak but significant male‐biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib‐mating. As such, the sex‐biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.  相似文献   
30.
Fucose-containing glycoconjugates are key antigenic determinants in many biological processes. A change in expression levels of the enzymes responsible for tailoring these glycoconjugates has been associated with many pathological conditions and it is therefore surprising that little information is known regarding the mechanism of action of these important catabolic enzymes. Thermotoga maritima, a thermophilic bacterium, produces a wide range of carbohydrate-processing enzymes including a 52-kDa alpha-L-fucosidase that has 38% sequence identity and 56% similarity to human fucosidases. The catalytic nucleophile of this enzyme was identified to be Asp-224 within the peptide sequence 222WNDMGWPEKGKEDL235 using the mechanism-based covalent inactivator 2-deoxy-2-fluoro-alpha-L-fucosyl fluoride. The 10(4)-fold lower activity (kcat/Km) of the site-directed mutant D224A, and the subsequent rescue of activity upon addition of exogenous nucleophiles, conclusively confirms this assignment. This article presents the first direct identification of the catalytic nucleophile of an alpha-L-fucosidase, a key step in the understanding of these important enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号