首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416395篇
  免费   53183篇
  国内免费   198篇
  469776篇
  2018年   3556篇
  2016年   4626篇
  2015年   6598篇
  2014年   7616篇
  2013年   11023篇
  2012年   12231篇
  2011年   12581篇
  2010年   8450篇
  2009年   7876篇
  2008年   11104篇
  2007年   11469篇
  2006年   10663篇
  2005年   10283篇
  2004年   9932篇
  2003年   9910篇
  2002年   9529篇
  2001年   19725篇
  2000年   19935篇
  1999年   15734篇
  1998年   5477篇
  1997年   6037篇
  1996年   5741篇
  1995年   5361篇
  1994年   5255篇
  1993年   5383篇
  1992年   13353篇
  1991年   13181篇
  1990年   12564篇
  1989年   12366篇
  1988年   11279篇
  1987年   10926篇
  1986年   10209篇
  1985年   10159篇
  1984年   8502篇
  1983年   7339篇
  1982年   5642篇
  1981年   5023篇
  1980年   4845篇
  1979年   7997篇
  1978年   6397篇
  1977年   5822篇
  1976年   5488篇
  1975年   6028篇
  1974年   6220篇
  1973年   6150篇
  1972年   5551篇
  1971年   5106篇
  1970年   4258篇
  1969年   4101篇
  1968年   3674篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
81.
W D Davies  J Pittard  B E Davidson 《Gene》1985,33(3):323-331
Defective transducing phages carrying aroG, the structural gene for phenylalanine (phe)-inhibitable phospho-2-keto-heptonate aldolase (EC 4.1.2.15; previously known as 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase[phe]), have been isolated, and DNA from two of these phages has been used to construct a restriction map of the region from att lambda to aroG. A 7.6-kb PstI-HindIII fragment from one of these phages was cloned into pBR322 and shown to contain aroG. The location of aroG within the 7.6 kb was established by subcloning and Tn3 transpositional mutagenesis. A fragment carrying the aroG promoter and operator has been cloned into a high copy number promoter-cloning vector (pMC489), and the resulting aroGpo-LacZ' (alpha) fusion subcloned in a low copy number vector. Strains with this fusion on the low copy number vector exhibit negative regulation of beta-galactosidase expression by both phenylalanine and tryptophan and positive regulation by tyrosine in a tyrR+ background.  相似文献   
82.
83.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Rhodospirillum rubrum was shown to be an oxygen-sensitive, nickel, iron-sulfur, and zinc-containing protein that was induced by carbon monoxide (CO). The enzyme was purified 212-fold by heat treatment, ion-exchange, and hydroxylapatite chromatography and preparative gel electrophoresis. The purified protein, active as a monomer of Mr = 61,800, existed in two forms that were comprised of identical polypeptides and differed in metal content. Form 1 comprised 90% of the final activity, had a specific activity of 1,079 mumol CO oxidized per min-1 mg-1, and contained 7 iron, 6 sulfur, 0.6 nickel, and 0.4 zinc/monomer. Form 2 had a lower specific activity (694 mumol CO min-1 mg-1) and contained 9 iron, 8 sulfur, 1.4 nickel, and 0.8 zinc/monomer. Reduction of either form by CO or dithionite resulted in identical, rhombic ESR spectra with g-values of 2.042, 1.939, and 1.888. Form 2 exhibited a 2-fold higher integrated spin concentration, supporting the conclusion that it contained an additional reducible metal center(s). Cells grown in the presence of 63NiCl2 incorporated 63Ni into CO dehydrogenase. Although nickel was clearly present in the protein, it was not ESR-active under any conditions tested. R. rubrum CO dehydrogenase was antigenically distinct from the CO dehydrogenases from Methanosarcina barkeri and Clostridium thermoaceticum.  相似文献   
84.
Characterization of staphylococci   总被引:11,自引:0,他引:11  
A total of 158 Staphylococcus strains from various sources were characterized by biochemical, physiological, and morphological tests. Numerical taxonomy was applied by using these features. Taxonomic analysis was done with programs run under the MVS-TSO system of the IBM 370 complex and PDP-10 system of the National Institutes of Health. DNA-DNA hybridization with nitrocellulose filters was done to compare selected atypical cultures with American Type Culture Collection reference strains. We found that the use of the nomenclature of Bergey's Manual (8th edition) to identify these strains by species was not adequate. DNA homology values supported the formation of Staphylococcus hyicus subsp. hyicus separate from Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus. The three tests that best separated these strains into four species were (i) tube coagulase (6-h or 24-h porcine plasma or 24-h Difco rabbit plasma), (ii) production of acetoin or acid aerobically from ribose, maltose, or trehalose, and (iii) growth in the presence of novobiocin. Four strains of S. hyicus subsp. hyicus (VII76, VII113, VII131, and VA519) gave typical enterotoxigenic responses in monkey-feeding tests but were negative for enterotoxins A through E, suggesting the presence of one or more new enterotoxins. Two coagulase-negative, heat-stable DNase-positive strains (D143 and ARM) could not be classified by either DNA-DNA hybridization or numerical taxonomy, and D143 was enterotoxigenic as measured by the monkey-feeding bioassay. DNA homology showed that strain FRI-698M was more closely related to S. epidermidis than to S. aureus, yet it produced enterotoxin D. These data suggest the occurrence of coagulase-negative enterotoxigenic strains that are not S. aureus; nonetheless, a positive tube coagulase test and heat-stable DNase test should together be useful for routine screening of most potentially enterotoxigenic staphylococci in foods.  相似文献   
85.
86.
87.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   
88.
An isoleucine arrest point in G1 was determined by two methods for CHO and 3T3 cells. In the first method the fraction of cells entering S after isoleucine deprivation was assessed by [3H]thymidine labelling and autoradiography. In the second method cells entering S after isoleucine deprivation were identified by double-label autoradiography using [3H] and [14C]thymidine. From the fraction of cells entering S, determined by the two methods, the arrest point in G1 (and entry into G0) is located within the last 40 min of G1.  相似文献   
89.
The major active protein phosphatase present in a rabbit skeletal muscle extract is associated with the glycogen particle and migrates in sucrose density gradient centrifugation as a Mr = 70,000 protein and contains modulator activity. Addition of extra modulator protein causes a time- and concentration-dependent conversion of the enzyme to an inactive FA-ATP, Mg-dependent form. The intrinsic modulator in the active phosphatase is destroyed by limited proteolysis without an appreciable change in the phosphatase activity. The proteolyzed active enzyme has a lower molecular weight (Mr = 40,000) and it reassociates with the modulator producing a FA-ATP, Mg-dependent enzyme form (Mr = 60,000). The modulator protein is used stoichiometrically in the activation of the ATP, Mg-dependent phosphatase. This is in agreement with the presence of one unit of modulator activity per unit of native spontaneously active phosphatase.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号