首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   59篇
  314篇
  2022年   2篇
  2021年   7篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   18篇
  2014年   11篇
  2013年   18篇
  2012年   19篇
  2011年   18篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   12篇
  2006年   16篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1985年   8篇
  1984年   3篇
  1982年   4篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1938年   1篇
  1928年   1篇
  1892年   1篇
  1887年   1篇
排序方式: 共有314条查询结果,搜索用时 0 毫秒
41.
Marine pest incursions can cause significant ongoing damage to aquaculture, biodiversity, fisheries habitat, infrastructure and social amenity. They represent a significant and ongoing economic burden. Marine pests can be introduced by several vectors including aquaculture, aquarium trading, commercial shipping, fishing, floating debris, mining activities and recreational boating. Despite the inherent risks, there is currently relatively little routine surveillance of marine pest species conducted in the majority of countries worldwide. Accurate and rapid identification of marine pest species is central to early detection and management. Traditional techniques (e.g. physical sampling and sorting), have limitations, which has motivated some progress towards the development of molecular diagnostic tools. This review provides a brief account of the techniques traditionally used for detection and describes developments in molecular-based methods for the detection and surveillance of marine pest species. Recent advances provide a platform for the development of practical, specific, sensitive and rapid diagnosis and surveillance tools for marine pests for use in effective prevention and control strategies.  相似文献   
42.
The biosynthesis of the 2'-(5"-phosphoribosyl)-3'-dephospho-coenzyme A (CoA) prosthetic group of citrate lyase (EC 4.1.3.6), a key enzyme of citrate fermentation, proceeds via the initial formation of the precursor 2'-(5"-triphosphoribosyl)-3'-dephospho-CoA and subsequent transfer to apo-citrate lyase with removal of pyrophosphate. In Escherichia coli, the two steps are catalyzed by CitG and CitX, respectively, and the corresponding genes are part of the citrate lyase gene cluster, citCDEFXG. In the homologous citCDEFG operon of Klebsiella pneumoniae, citX is missing. A search for K. pneumoniae citX led to the identification of a second genome region involved in citrate fermentation which comprised the citWX genes and the divergent citYZ genes. The citX gene was confirmed to encode holo-citrate lyase synthase, whereas citW was shown to encode a citrate carrier, the third one identified in this species. The citYZ genes were found to encode a two-component system consisting of the sensor kinase CitY and the response regulator CitZ. Remarkably, both proteins showed >or=40% sequence identity to the citrate-sensing CitA-CitB two-component system, which is essential for the induction of the citrate fermentation genes in K. pneumoniae. A citZ insertion mutant was able to grow anaerobically with citrate, indicating that CitZ is not essential for expression of citrate fermentation genes. CitX synthesis was induced to a basal level under anaerobic conditions, independent of citrate, CitB, and CitZ, and to maximal levels during anaerobic growth with citrate as the sole carbon source. Similar to the other citrate fermentation enzymes, CitX synthesis was apparently subject to catabolite repression.  相似文献   
43.
44.
45.
46.
47.
A survey of bivalves from Heron Island on the Great Barrier Reef, Australia, revealed a novel digenean infection in Lioconcha castrensis (Bivalvia: Veneridae). The cercaria has oral and ventral suckers, a dorsoventrally orientated stylet embedded in the oral sucker, penetration glands, and a large tail that is inflated at its base. This morphology is broadly consistent with that of previously described gorgoderid cercariae. Partial large subunit ribosomal RNA gene (D1-D3 domains) was sequenced and aligned with sequences from other gorgoderids and related families. Phylogenetic analysis also suggests that the species belongs to the Gorgoderinae. To our knowledge, this is the first report of a gorgoderid from a marine bivalve.  相似文献   
48.
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.  相似文献   
49.
Patatin‐like phospholipases are involved in numerous cellular functions, including lipid metabolism and membranes remodeling. The patatin‐like catalytic domain, whose phospholipase activity relies on a serine‐aspartate dyad and an anion binding box, is widely spread among prokaryotes and eukaryotes. We describe TgPL2, a novel patatin‐like phospholipase domain‐containing protein from the parasitic protist Toxoplasma gondii. TgPL2 is a large protein, in which the key motifs for enzymatic activity are conserved in the patatin‐like domain. Using immunofluorescence assays and immunoelectron microscopy analysis, we have shown that TgPL2 localizes to the apicoplast, a non‐photosynthetic plastid found in most apicomplexan parasites. This plastid hosts several important biosynthetic pathways, which makes it an attractive organelle for identifying new potential drug targets. We thus addressed TgPL2 function by generating a conditional knockdown mutant and demonstrated it has an essential contribution for maintaining the integrity of the plastid. In absence of TgPL2, the organelle is rapidly lost and remaining apicoplasts appear enlarged, with an abnormal accumulation of membranous structures, suggesting a defect in lipids homeostasis. More precisely, analyses of lipid content upon TgPL2 depletion suggest this protein is important for maintaining levels of apicoplast‐generated fatty acids, and also regulating phosphatidylcholine and lysophosphatidylcholine levels in the parasite.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号