首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   10篇
  2023年   5篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   15篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1984年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
91.
Protein profiling in blood serum by fractionation and MS analysis has been applied in mice to assess its applicability as a fast, economical alternative to current DNA and RNA analyses for diagnosis of neuromuscular disorders. Mass spectra of peptides and proteins were generated using serum from dystrophin-deficient mdx and control mice by WCX ClinProt bead fractionation, followed by MALDI-MS. Double cross-validatory linear discriminant and logistic regression data analysis methods were compared with a new Bayesian logistic regression method. These were evaluated on their ability to discriminate between healthy and dystrophic samples, and to identify the discriminatory peaks in the mass spectra. All three approaches classified the spectra with comparable misclassification rates (between 18.4 and 20.6%), with much overlap between the differential peaks identified between the methods. The differential peak pattern from the Bayesian method was sparser and easier to interpret than from the other two methods, without compromising classifying strength. One of the two main differentiating peaks at m/z 3908 was identified as an N-terminal peptide of coagulation Factor XIIIa, previously identified in human serum. This work underlines the translational aspect of serum protein profiling in mice and supports a further study with serum from patients with neuromuscular disorders.  相似文献   
92.
The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.  相似文献   
93.
Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins.  相似文献   
94.
The polytopic inner membrane protein MalF is a constituent of the MalFGK(2) maltose transport complex in Escherichia coli. We have studied the biogenesis of MalF using a combination of in vivo and in vitro approaches. MalF is targeted via the SRP pathway to the Sec/YidC insertion site. Despite close proximity of nascent MalF to YidC during insertion, YidC is not required for the insertion of MalF into the membrane. However, YidC is required for the stability of MalF and the formation of the MalFGK(2) maltose transport complex. Our data indicate that YidC supports the folding of MalF into a stable conformation before it is incorporated into the maltose transport complex.  相似文献   
95.
96.
ρB-crystallin (AJ245805) is a major protein component (20%) in the eye lens of the gecko Lepidodactylus lugubris. Limited peptide sequence analysis earlier revealed that it belongs to the aldo-keto reductase superfamily, as does the frog lens ρ-crystallin. We have now determined the complete cDNA sequence of ρB-crystallin and established that it is more closely related to the aldose reductase branch of the superfamily than to frog ρ-crystallin. These gecko and frog lens proteins have thus independently been recruited from the same enzyme superfamily. Aldose reductase is implicated in the development of diabetic cataract in mammals, and, if active, ρB-crystallin might be a potential risk for the gecko lens. Apart from a replacement 298 Cys → Tyr, ρB-crystallin possesses all amino acid residues thought to be required for catalytic activity of the aldose reductases. However, modeling studies of the ρB-crystallin structure indicate that substrate specificity and nicotinamide cofactor affinity might be affected. Indeed, neither recombinant ρB-crystallin nor the reverse mutant 298 Tyr → Cys showed noticeable activity toward aliphatic and aromatic substrates, although cofactor binding was retained. Various other oxidoreductases are known to be recruited as abundant lens proteins in many vertebrate species; ρB-crystallin demonstrates that an aldose reductase-related enzyme also can be modified to this end. Received: 18 July 2000 / Accepted: 3 November 2000  相似文献   
97.
A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified that is specifically associated with a plant cell separation process that results in complete cell detachment.Abbreviations DAA Days after anthesis - 2,4-D 2,4-Dichlorophenoxyacetic acid - ELISA Enzyme-linked immunosorbent assay - GalA Galacturonic acid - HGA Homogalacturonan - HPAEC High-performance anion-exchange chromatography - HPSEC High-performance size-exclusion chromatography - RG-I Rhamnogalacturonan-I - RG-II Rhamnogalacturonan-II - XGA Xylogalacturonan  相似文献   
98.
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis of a largely functional dystrophin, associated with a milder Becker muscular dystrophy phenotype. We have previously successfully targeted 20 different DMD exons that would, theoretically, be beneficial for >75% of all patients. To further enlarge this proportion, we here studied the feasibility of double and multiexon skipping. Using a combination of AONs, double skipping of exon 43 and 44 was induced, and dystrophin synthesis was restored in myotubes from one patient affected by a nonsense mutation in exon 43. For another patient, with an exon 46-50 deletion, the therapeutic double skipping of exon 45 and 51 was achieved. Remarkably, in control myotubes, the latter combination of AONs caused the skipping of the entire stretch of exons from 45 through 51. This in-frame multiexon skipping would be therapeutic for a series of patients carrying different DMD-causing mutations. In fact, we here demonstrate its feasibility in myotubes from a patient with an exon 48-50 deletion. The application of multiexon skipping may provide a more uniform methodology for a larger group of patients with DMD.  相似文献   
99.
100.
Mutations in genes encoding proteins of the human dystrophin-associated glycoprotein complex (DGC) cause the Duchenne, Becker and limb-girdle muscular dystrophies. Subsets of the DGC proteins form tissue-specific complexes which are thought to play structural and signaling roles in the muscle and at the neuromuscular junction. Furthermore, mutations in the dystrophin gene that lead to Duchenne muscular dystrophy are frequently associated with cognitive and behavioral deficits, suggesting a role for dystrophin in the nervous system. Despite significant progress over the past decade, many fundamental questions about the roles played by dystrophin and the other DGC proteins in the muscle and peripheral and central nervous systems remain to be answered. Mammalian models of DGC gene function are complicated by the existence of fully or partially redundant genes whose functions can mask effects of the inactivation of a given DGC gene. The genome of the fruitfly Drosophila melanogaster encodes a single ortholog of the majority of the mammalian DGC protein subclasses, thus potentially simplifying their functional analysis. We report here the embryonic mRNA expression patterns of the individual DGC orthologs. We find that they are predominantly expressed in the nervous system and in muscle. Dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 1, and all three sarcoglycan orthologs are found in the brain and the ventral nerve cord, while dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 2, sarcoglycan alpha and sarcoglycan delta are expressed in distinct and sometimes overlapping domains of mesoderm-derived tissues, i.e. muscles of the body wall and around the gut.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号