首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
  1973年   4篇
  1972年   1篇
  1968年   1篇
  1956年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
11.
Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.  相似文献   
12.
Experimental tests, such as the confined and unconfined compression and the indentation tests, are traditionally used to determine the poroelastic properties of hydrated soft tissues (HSTs). The purpose of this study was to quantitatively evaluate the reliability of H(A) and K values as identified from experimental confined test data, estimating the errors that could occur in several situations with more realistic sample geometry and boundary conditions. Finite element models of the step-wise stress-relaxation confined compression tests on HSTs were developed including geometrical imperfections of the sample and the presence of a gap between the piston and the confining chamber. The errors occurring when H(A) and K were estimated by means of the analytical solution of the 1-D confined compression problem were assessed. Results of the analysis indicate that errors in the parameter estimation due to geometrical inaccuracies of the sample can be eliminated by applying a 5% strain pre-compression to the sample. Gap errors are negligible for H(A), can reach 20% for K, and cannot be eliminated by a pre-compression of the sample.  相似文献   
13.
14.
Bioreactors allowing direct-perfusion of culture medium through tissue-engineered constructs may overcome diffusion limitations associated with static culturing, and may provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed on cells within scaffolds is directly dependent on scaffold microstructure and on bioreactor configuration. Aim of this study is to investigate optimal shear stress ranges and to quantitatively predict the levels of hydrodynamic shear imposed to cells during the experiments. Bovine articular chondrocytes were seeded on polyestherurethane foams and cultured for 2 weeks in a direct perfusion bioreactor designed to impose 4 different values of shear level at a single flow rate (0.5 ml/min). Computational fluid dynamics (CFD) simulations were carried out on reconstructions of the scaffold obtained from micro-computed tomography images. Biochemistry analyses for DNA and sGAG were performed, along with electron microscopy. The hydrodynamic shear induced on cells within constructs, as estimated by CFD simulations, ranged from 4.6 to 56 mPa. This 12-fold increase in the level of applied shear stress determined a 1.7-fold increase in the mean content in DNA and a 2.9-fold increase in the mean content in sGAG. In contrast, the mean sGAG/DNA ratio showed a tendency to decrease for increasing shear levels. Our results suggest that the optimal condition to favour sGAG synthesis in engineered constructs, at least at the beginning of culture, is direct perfusion at the lowest level of hydrodynamic shear. In conclusion, the presented results represent a first attempt to quantitatively correlate the imposed hydrodynamic shear level and the invoked biosynthetic response in 3D engineered chondrocyte systems.  相似文献   
15.
The present review highlights recent progresses in the technique of combinatorial peptide ligand libraries (CPPL), a methodology that has much to offer for the detection of low- to very-low abundance proteins (nanograms/mL scale and below) in any proteome. In particular, advances in exploration of the urinary, plasma and tissue proteomes are discussed and evaluated. It is shown that when treating biological fluids, such as plasma, with CPLLs, the detection sensitivity, which in the control only reaches 10 ng/mL, can be enhanced to as high as 10 pg/mL, with an increment of sensitivity of three orders of magnitude. The possibility of using CPLLs as a two-dimensional pre-fractionation of any proteome is also evaluated: on the charge axis, CPLL capture can be implemented at no less than three different pH values (4.0, 7.2 and 9.3), thus permitting a capture of proteinaceous analytes bearing a net positive or net negative charge, respectively. When capture is performed in the absence of salts or at high levels of salts (of the Hofmeister series), one can favor the capture of hydrophilic vs. hydrophobic proteins, respectively. This would thus be a genuine 2D protocol, working on orthogonal separation principles (charge vs. hydrophobicity). As the horizon of CPLLs is expanding and its use is exponentially growing, we expect major breakthroughs in, e.g., biomarker discovery, a field that has suffered a decade of failures.  相似文献   
16.
Although intravenous immunoglobulins (IVIG) and other plasma therapeutics have had a relatively good safety record, improved methods for viral clearance are constantly being evaluated and incorporated into new manufacturing processes. Gamma irradiation has been used routinely to assure sterility of healthcare products and medical devices, but it has not been applied successfully as a viral inactivation method for biologics. We examine whether virucidal doses of gamma irradiation (50 kGy) can be delivered to a manufacturing intermediate form of IVIG, a fractionated plasma paste, with negligible effect on structural and functional integrity of purified IgG product. Immunoglobulins from paste were examined for radiation-induced damage by SDS-PAGE and ELISAs utilizing viral antigens specific for rubella, CMV and mumps. Fc domain integrity was assessed by immunoblotting, quantitatively comparing the binding of irradiated and non-irradiated materials to cell surface Fcgamma receptors, and by employing quantitative RT-PCR to study the kinetics of accumulation of mRNA for the immune modulatory cytokines IL-1alpha, IL-1beta, IL-4, IL-8, IFNgamma, and TNFalpha. The results demonstrate that Fab and Fc domains of IVIG remain essentially intact and functional after gamma irradiation to virucidal doses, suggesting that this method could be used to enhance the safety of IVIG products.  相似文献   
17.
By studying the import of radioactively labelled small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) into chloroplasts of the green alga C. reinhardtii cw-15 protein delivery to chloroplasts was found to vary during the cell cycle. Chloroplasts were isolated from highly synchronous cultures at different time points during the cell cycle. When pSS was imported into 'young' chloroplasts isolated early in the light period about three times less pSS was processed to small subunit SS than in 'mature' chloroplasts from the middle of the light period. In 'young' chloroplasts also, less pSS was bound to the envelope surface. During the second half of the light period the import competence of isolated chloroplasts decreased again when based on chlorophyll content or cell volume, but did not change significantly when related to chloroplast number. Measurements of pSS binding to the surface of chloroplasts of different age indicated that the adaptation of protein import competence during the cell cycle is due to a variation of the number of binding sites per chloroplast surface area, rather than to modulation of the binding constant.  相似文献   
18.
Q Su  K Schmid  C Schild  A Boschetti 《FEBS letters》2001,508(2):165-169
In higher plants, chloroplast-destined precursor proteins are thought to be phosphorylated. Mediated by a specific 14-3-3 protein, these phosphorylated proteins bind to the chloroplast surface and are subsequently imported into the chloroplast. We demonstrate that also in the green alga Chlamydomonas reinhardtii the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase becomes phosphorylated by a plant protein kinase and that the phosphorylation site is located in the transit peptide. The phosphorylation status of the precursor protein regulates its import into chloroplasts especially at an early step during this process. The possible physiological function is discussed.  相似文献   
19.
20.
Combinatorial peptide ligand libraries have been extensively used for the enrichment of very low-abundance proteins, while concomitantly reducing the concentration of major species. A number of biological extracts have been reported with great success. Nevertheless, there are examples where the enrichment was not as good as expected. It has been demonstrated that the protocol itself may be responsible for the final results and is not necessarily applied as it should. In this paper, technical details along with important suggestions are given for an optimized enrichment of gene products present at trace levels among very many other proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号