首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6335篇
  免费   641篇
  国内免费   1篇
  2023年   19篇
  2022年   55篇
  2021年   100篇
  2020年   74篇
  2019年   75篇
  2018年   96篇
  2017年   107篇
  2016年   143篇
  2015年   260篇
  2014年   320篇
  2013年   399篇
  2012年   502篇
  2011年   489篇
  2010年   346篇
  2009年   303篇
  2008年   417篇
  2007年   393篇
  2006年   379篇
  2005年   342篇
  2004年   329篇
  2003年   318篇
  2002年   278篇
  2001年   82篇
  2000年   89篇
  1999年   92篇
  1998年   95篇
  1997年   50篇
  1996年   59篇
  1995年   66篇
  1994年   66篇
  1993年   55篇
  1992年   57篇
  1991年   39篇
  1990年   47篇
  1989年   41篇
  1988年   46篇
  1987年   38篇
  1986年   27篇
  1985年   33篇
  1984年   25篇
  1983年   23篇
  1982年   16篇
  1981年   16篇
  1979年   23篇
  1978年   16篇
  1977年   19篇
  1976年   12篇
  1974年   14篇
  1973年   13篇
  1972年   12篇
排序方式: 共有6977条查询结果,搜索用时 171 毫秒
161.
Chytridiomycosis has been identified as a major cause of global amphibian declines. Despite widespread evidence of Batrachochytrium dendrobatidis infection in South African frogs, sampling for this disease has not focused on threatened species, or whether this pathogen poses a disease risk to these species. This study assessed the occurrence of Bd-infection in South African Red List species. In addition, all known records of infection from South Africa were used to model the ecological niche of Bd to provide a better understanding of spatial patterns and associated disease risk. Presence and prevalence of Bd was determined through quantitative real-time PCR of 360 skin swab samples from 17 threatened species from 38 sites across the country. Average prevalence was 14.8% for threatened species, with pathogen load varying considerably between species. MaxEnt was used to model the predicted distribution of Bd based on 683 positive records for South Africa. The resultant probability threshold map indicated that Bd is largely restricted to the wet eastern and coastal regions of South Africa. A lack of observed adverse impacts on wild threatened populations supports the endemic pathogen hypothesis for southern Africa. However, all threatened species occur within the limits of the predicted distribution for Bd, exposing them to potential Bd-associated risk factors. Predicting pathogen distribution patterns and potential impact is increasingly important for prioritising research and guiding management decisions.  相似文献   
162.
163.
The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer–reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.  相似文献   
164.
Increasing the durability of crop resistance to plant pathogens is one of the key goals of virulence management. Despite the recognition of the importance of demographic and environmental stochasticity on the dynamics of an epidemic, their effects on the evolution of the pathogen and durability of resistance has not received attention. We formulated a stochastic epidemiological model, based on the Kramer-Moyal expansion of the Master Equation, to investigate how random fluctuations affect the dynamics of an epidemic and how these effects feed through to the evolution of the pathogen and durability of resistance. We focused on two hypotheses: firstly, a previous deterministic model has suggested that the effect of cropping ratio (the proportion of land area occupied by the resistant crop) on the durability of crop resistance is negligible. Increasing the cropping ratio increases the area of uninfected host, but the resistance is more rapidly broken; these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur when we take account of demographic stochasticity, but found that the durability does depend on the cropping ratio. Secondly, we tested whether a superimposed external source of stochasticity (for example due to environmental variation or to intermittent fungicide application) interacts with the intrinsic demographic fluctuations and how such interaction affects the durability of resistance. We show that in the pathosystem considered here, in general large stochastic fluctuations in epidemics enhance extinction of the pathogen. This is more likely to occur at large cropping ratios and for particular frequencies of the periodic external perturbation (stochastic resonance). The results suggest possible disease control practises by exploiting the natural sources of stochasticity.  相似文献   
165.
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.  相似文献   
166.
The non‐geminate recombination of charge carriers in polymer‐fullerene solar cells has been modeled in the last few years with a trap‐assisted recombination model, which states that the apparent recombination order depends on the concentration of trapped charges tailing into the band gap. Higher concentrations of trapped charges lead to higher apparent recombination orders. In this work, the mass fraction f of highly crystalline nanofibrillar P3HT to the total P3HT content in P3HT:PCBM solar cells is consistently varied, controlling the temperature of a nanofibers‐P3HT casting dispersion. A systematic study of the apparent recombination order, measured with a transient photovoltage technique, as a function of f is presented. A correlation is shown between the apparent recombination order, the P3HT crystallinity, and the trap concentration in the band gap measured with an admittance spectroscopy technique.  相似文献   
167.
Synthetic biology (SynBio) is a global endeavour with research and development programs in many countries, and due (in part) to its multi-use characteristics it has potential to improve global health in the area of vaccine development, diagnostics, drug synthesis, and the detection and remediation of environmental toxins. However, SynBio will also concurrently require global governance. Here we present what we have learnt from the articles in this Special Issue, and the workshop we hosted in The Hague in February of 2012 on SynBio, global health, and global governance that generated many of the papers appearing here. Importantly we take the notion of ‘responsible research and innovation’ as a guiding perspective. In doing so our understanding of governance is one that shifts its focus from preventing risks and other potential negative implications, and instead is concerned with institutions and practices involved in the inclusive steering of science and technology towards socially desirable outcomes. We first provide a brief overview of the notion of global health, and SynBio’s relation to global health issues. The core of the paper explores some of the dynamics involved in fostering SynBio’s global health pursuits; paying particular attention to of intellectual property, incentives, and commercialization regimes. We then examines how DIYbio, Interactive Learning and Action, and road-mapping activities can be seen as positive and productive forms of governance that can lead to more inclusive SynBio global health research programs.  相似文献   
168.
169.
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.  相似文献   
170.
HIV-1 Rev is the key protein in the nucleocytoplasmic export and expression of the late viral mRNAs. An important aspect for its function is its ability to multimerize on these mRNAs. We have recently identified a llama single-domain antibody (Nb190) as the first inhibitor targeting the Rev multimerization function in cells. This nanobody is a potent intracellular antibody that efficiently inhibits HIV-1 viral production. In order to gain insight into the Nb190-Rev interaction interface, we performed mutational and docking studies to map the interface between the nanobody paratope and the Rev epitope. Alanine mutants of the hyper-variable domains of Nb190 and the Rev multimerization domains were evaluated in different assays measuring Nb190-Rev interaction or viral production. Seven residues within Nb190 and five Rev residues are demonstrated to be crucial for epitope recognition. These experimental data were used to perform docking experiments and map the Nb190-Rev structural interface. This Nb190-Rev interaction model can guide further studies of the Nb190 effect on HIV-1 Rev function and could serve as starting point for the rational development of smaller entities binding to the Nb190 epitope, aimed at interfering with protein-protein interactions of the Rev N-terminal domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号