首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   99篇
  609篇
  2021年   3篇
  2019年   5篇
  2015年   19篇
  2014年   14篇
  2013年   21篇
  2012年   35篇
  2011年   21篇
  2010年   17篇
  2009年   11篇
  2008年   13篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   18篇
  2001年   14篇
  2000年   17篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   14篇
  1990年   7篇
  1989年   11篇
  1988年   10篇
  1987年   17篇
  1986年   19篇
  1985年   12篇
  1984年   11篇
  1983年   12篇
  1982年   12篇
  1981年   5篇
  1980年   7篇
  1979年   6篇
  1978年   9篇
  1977年   19篇
  1976年   8篇
  1975年   7篇
  1974年   15篇
  1973年   10篇
  1972年   10篇
  1971年   11篇
  1970年   7篇
  1969年   3篇
  1967年   4篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
101.
Toll-like receptors (TLRs) play a crucial role in innate- and adaptive immunity. The TLR pathways were shown to play key functional roles in experimental acute and chronic kidney injury, including the allo-immune response after experimental renal transplantation. Data about the precise impact of TLRs and their negative regulators on human renal transplant outcomes however are limited and contradictory. We studied twelve non-synonymous single nucleotide polymorphisms (SNPs) of which eleven in TLR1-8 and one in SIGIRR in a final cohort comprising 1116 matching donors and recipients. TLR3 p.Leu412Phe and SIGIRR p.Gln312Arg significantly deviated from Hardy-Weinberg equilibrium and were excluded. The frequency distribution of the minor alleles of the remaining 10 TLR variants were compared between patients with end-stage renal disease (recipients) and controls (kidney donors) in a case-control study. Secondly, the associations between the minor allele frequency of the TLR variants and delayed graft function, biopsy-proven acute rejection and death-censored graft failure after transplantation were investigated with Cox regression. Carrier frequencies of the minor alleles of TLR1 p.His305Leu (OR = 4.79, 95% CI = 2.35–9.75, P = 0.0002), TLR1 p.Asn248Ser (OR = 1.26, 95% CI = 1.07–1.47, P = 0.04) and TLR8 p.Met1Val (OR = 1.37, 95% CI = 1.14–1.64, P = 0.008) were significantly higher in patients with ESRD, with little specificity for the underlying renal disease entity (adjusted for age, gender and donor-recipient relatedness). The minor allele frequency of none of the TLR variants significantly associated with the surrogate and definite outcomes, even when multivariable models were created that could account for TLR gene redundancy. In conclusion, genetic variants in TLR genes were associated with the prevalence of ESRD but not renal transplant outcomes. Therefore, our data suggests that specific TLR signaling routes might play a role in the final common pathway of primary renal injury. A role for TLR signaling in the context of renal transplantation is probably limited.  相似文献   
102.
Dendrite morphology, a neuron's anatomical fingerprint, is a neuroscientist's asset in unveiling organizational principles in the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In order to obtain a formal understanding of dendritic branching, we studied distributions of morphological parameters in a group of four individually identifiable neurons of the fly visual system. We found that parameters relating to the branching topology were similar throughout all cells. Only parameters relating to the area covered by the dendrite were cell type specific. With these areas, artificial dendrites were grown based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy. Although the same branching rule was used for all cells, this yielded dendritic structures virtually indistinguishable from their real counterparts. From these principles we derived a fully-automated model-based neuron reconstruction procedure validating the artificial branching rule. In conclusion, we suggest that the genetic program implementing neuronal branching could be constant in all cells whereas the one responsible for the dendrite spanning field should be cell specific.  相似文献   
103.
Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4–6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism.  相似文献   
104.
105.
106.

Objective

Current methods do not predict the acute renal allograft injury immediately after kidney transplantation. We evaluated the diagnostic performance of urinary calprotectin for predicting immediate posttransplant allograft injury.

Methods

In a multicenter, prospective-cohort study of 144 incipient renal transplant recipients, we postoperatively measured urinary calprotectin using an enzyme-linked immunosorbent assay and estimated glomerular filtration rate (eGFR) after 4 weeks, 6 months, and 12 months.

Results

We observed a significant inverse association of urinary calprotectin concentrations and eGFR 4 weeks after transplantation (Spearman r = −0.33; P<0.001). Compared to the lowest quartile, patients in the highest quartile of urinary calprotectin had an increased risk for an eGFR less than 30 mL/min/1.73 m2 four weeks after transplantation (relative risk, 4.3; P<0.001; sensitivity, 0.92; 95% CI, 0.77 to 0.98; specificity, 0.48; 95% CI, 0.31 to 0.66). Higher urinary calprotectin concentrations predicted impaired kidney function 4 weeks after transplantation, as well as 6 months and 12 months after transplantation. When data were analyzed using the urinary calprotectin/creatinine-ratio similar results were obtained. Urinary calprotectin was superior to current use of absolute change of plasma creatinine to predict allograft function 12 months after transplantation. Urinary calprotectin predicted an increased risk both in transplants from living and deceased donors. Multivariate linear regression showed that higher urinary calprotectin concentrations and older donor age predicted lower eGFR four weeks, 6 months, and 12 months after transplantation.

Conclusions

Urinary calprotectin is an early, noninvasive predictor of immediate renal allograft injury after kidney transplantation.  相似文献   
107.
108.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   
109.
7/8embrane IgM (mIgM) on human B lymphocytes is noncovalently associated with a disulfide-linked dimer that contains phosphoproteins of 47 and 37 kDa. In this study, the biochemical properties and the identity of these Ag receptor-associated components have been addressed. Both subunits carry N-linked carbohydrate groups. After deglycosylation, the 47-kDa and 37-kDa proteins have similar molecular masses, of about 23 kDa, and relatively acidic but different isoelectric points. The accumulated data, together with a previously performed comparison of tryptic peptides, suggest that the two components are structurally distinct and possibly encoded by different genes. Indeed, a mAb, raised against a synthetic peptide that was made on the basis of the published carboxyl-terminal amino acid sequence of the human mb-1 gene product, specifically reacted with the 47-kDa but not the 37-kDa subunit. None of the established B cell-specific mAb characterized in the Fourth International Workshop on Leukocyte Antigens, including CD24, CD37, and CD72, detect the mIgM-linked heterodimer, which makes it a newly defined human B cell Ag.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号