首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   21篇
  2023年   1篇
  2021年   5篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   8篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有195条查询结果,搜索用时 218 毫秒
31.
Studies of sibling competition within brood hierarchies have rarely assessed simultaneously the effects of sex and rank in the brood hierarchy on traits other than offspring mortality and differential growth. We studied the expression of heat-shock proteins (Hsps) to assess the physiological stress response to different combinations of sex and position within competitive brood hierarchies in the black kite Milvus migrans (Bodd.), a sexually dimorphic raptor showing facultative siblicide. Senior males showed higher stress levels than did senior females and younger siblings of each sex as revealed by Hsp60 values. The analysis of Hsp70 levels indicated that nestlings from broods in which the senior chick was a male showed higher stress levels than did nestlings from broods in which the senior chick was a female. In addition, levels of Hsp60 were related negatively to nutritional condition expressed as levels of plasmatic albumin. This suggests that the sex of senior chicks may be key in determining their stress level and that of their siblings, which is probably associated with sibling competition by fighting within brood hierarchies. The comparatively higher stress levels of senior males (and their siblings) may be a consequence of their ability to exploit their potential advantage from being the head start while avoiding a possible competitive disadvantage from being the smaller sex, independent of environmental conditions determining the probability of brood reduction. Differential stress levels depending on sex and rank in the brood hierarchy may be a consequence of parental control of offspring behaviour through differential resource allocation (e.g. yolk androgens) or it may reflect adaptations of particular chicks (senior males) to enhance their competitive ability within brood hierarchies.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 383–390.  相似文献   
32.
33.
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E.  相似文献   
34.
Oral pathogens have created a menace in recent years due to biofilm formation and antimicrobial drug resistance. The current treatment strategy works well with antibiotics. However, constant use of antibiotics creates a selective pressure, which increases adaptability of the pathogens. Therefore, it is of interest to analyze the potential targets of genistein in dental pathogens using computer aided prediction tools.  相似文献   
35.
Previous studies have indicated that d(TC)n.d(GA)n microsatellites may serve as arrest signals for mammalian DNA replication through the ability of such sequences to form DNA triple helices and thereby inhibit replication enzymes. To further test this hypothesis, we examined the ability of d(TC)i.d(GA)i.d(TC)i triplexes to inhibit DNA unwinding in vitro by a model eukaryotic DNA helicase, the SV40 large T-antigen. DNA substrates that were able to form triplexes, and non-triplex-forming control substrates, were tested. We found that the presence of DNA triplexes, as assayed by endonuclease S1 and osmium tetroxide footprinting, significantly inhibited DNA unwinding by T-antigen. Strong inhibition was observed not only at acidic pH values, in which the triplexes were most stable, but also at physiological pH values in the range 6.9-7.2. Little or no inhibition was detected at pH 8.7. Based on these results, and on previous studies of DNA polymerases, we suggest that DNA triplexes may form in vivo and cause replication arrest through a dual inhibition of duplex unwinding by DNA helicases and of nascent strand synthesis by DNA polymerases. DNA triplexes also have the potential to inhibit recombination and repair processes in which helicases and polymerases are involved.  相似文献   
36.
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.  相似文献   
37.
On south‐west Indian Ocean islands, many crops and ornamental plants are threatened by the spiralling whitefly Aleurodicus dispersus (Hemiptera: Aleyrodidae), which is a polyphagous pest that is native to the Caribbean region. Aleurodicus dispersus causes economic damage to various crops on all the islands in the south‐west Indian Ocean. The hymenopteran parasitoid Encarsia guadeloupae (Hymenoptera: Aphelinidae) is a natural enemy of A. dispersus on the Caribbean islands. In this study, we assessed the geographical distribution of the parasitoid in La Réunion, an island in the south‐west Indian Ocean where the parasitoid was first observed in 2004. We also investigated its main life‐history traits. Field surveys indicated that the parasitoid is widespread in most of the low‐lying areas of the island and exhibits high parasitism rates on A. dispersus populations. At 25°C, E. guadeloupae adults had a mean longevity of 33.6 days, and its pre‐imaginal development required 23 days. The lower temperature threshold and thermal constant were estimated to be 7.9°C and 132 degree‐days, respectively. Females of E. guadeloupae preferred to deposit eggs in early rather than in late instars of A. dispersus, and oviposition rates were highest in the second larval instar. Females of E. guadeloupae were able to oviposit in larvae of other species of whiteflies found in La Réunion (Bemisia tabaci and Dialeurolonga simplex), although subsequent development of the parasitoid was not monitored. Finally, we discuss the potential use of E. guadeloupae for the control of whitefly populations on islands in the south‐west Indian Ocean.  相似文献   
38.
39.
40.
DNA supercoiling promotes formation of a bent repression loop in lac DNA   总被引:60,自引:0,他引:60  
Titration experiments on supercoiled lac DNA show that one repressor tetramer can bind simultaneously to the primary lac operator and to the very weak lac pseudo-operator, located 93 base-pairs apart. The formation of this complex is accompanied by the appearance of an extreme hypersensitive site in a five base-pair sequence located approximately midway between the operators. This remote sequence is hypersensitive to attack by two different chemical probes, dimethyl sulfate and potassium permanganate, the latter of which is a new probe for distorted DNA. We interpret these results in terms of a complex in which lac repressor holds two remote operators together in a DNA loop. The formation of this bent DNA loop requires negative DNA supercoiling. In vivo, both lac operators bind repressor even though the presence of multiple operator copies has forced the two operators to compete for a limited amount of repressor. This suggests that the operator and pseudo-operator have similar affinities for repressor in vivo. Such similar affinities were observed in vitro only when DNA supercoiling forced formation of a repression loop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号