全文获取类型
收费全文 | 92篇 |
免费 | 14篇 |
专业分类
106篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2018年 | 1篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 9篇 |
2012年 | 2篇 |
2011年 | 6篇 |
2010年 | 5篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 7篇 |
2001年 | 8篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1995年 | 4篇 |
1992年 | 2篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1974年 | 1篇 |
1916年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 15 毫秒
31.
M J Casti?eiras A Boronat E Itarte J J Guinovart M Rosell-Pérez 《Revista Espanola de Fisiología》1978,34(4):385-388
The effect of diabetogenic agents, alloxan and streptozotocin, in frogs has been studied. These drugs were administered to the animals by injection into the dorsal lymph sac. Alloxan did not exert any effect at non-lethal doses. At 300 mg/kg alloxan caused death of most of the animals in an hyperglycemic state in less than 72 hours. Streptozotocin at doses lower than 1 g/kg was ineffective. At 1.5 g/kg, a non-lethal dose, about half of the animals became diabetic. 相似文献
32.
Joann?Mudge Steven?B?Cannon Peter?Kalo Giles?ED?Oldroyd Bruce?A?Roe Christopher?D?Town Nevin?D?YoungEmail author 《BMC plant biology》2005,5(1):15
Background
Recent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds. 相似文献33.
Carmen Capel Asunción Fernández del Carmen Juan Manuel Alba Viviana Lima-Silva Francesc Hernández-Gras María Salinas Albert Boronat Trinidad Angosto Miguel A. Botella Rafael Fernández-Muñoz Antonio Granell Juan Capel Rafael Lozano 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2015,128(10):2019-2035
34.
Lidia Sabater Romana H?ftberger Anna Boronat Albert Saiz Josep Dalmau Francesc Graus 《PloS one》2013,8(3)
The goal of this study is to determine whether patients with paraneoplastic cerebellar degeneration (PCD) and small-cell lung cancer (SCLC) have a specific repertoire of antibodies, if SOX1 antibodies (SOX1-ab) can predict the presence of SCLC, and if antibodies to cell surface antigens occur in this syndrome. Antibody analysis was done using immunohistochemistry on rat brain, immunoblot with recombinant antigens, screening of cDNA expression libraries, and immunolabeling of live neurons in 39 patients with PCD and SCLC. VGCC-ab were measured by RIA, and SOX1-ab, Hu-ab, and ZIC4-ab by immunoblot. Lambert-Eaton myastenic syndrome (LEMS) was present in 10 of 23 patients with electrophysiological studies. At least one antibody was detected in 72% of patients. The individual frequencies were: 49% SOX1-ab, 44% VGCC-ab, 31% Hu-ab, and 13% ZIC4-ab. SOX1-ab occurred in 76% of patients with VGCC-ab and 27% of those without VGCC-ab (p = 0.0036). SOX1-ab were not found in 39 patients with sporadic late-onset cerebellar ataxia, 23 with cerebellar ataxia and glutamic acid decarboxylase antibodies, and 73 with PCD and cancer types other than SCLC (31 without onconeural antibodies, 25 with Yo-ab , 17 with Tr-ab). Five patients (13%) had antibodies against unknown neuronal cell surface antigens but none of them improved with immunotherapy. One serum immunoreacted against the axon initial segment of neurons and another serum against ELKS1, a protein highly expressed in the cerebellum that interacts with the beta4-subunit of the VGCC. In conclusion, 72% of patients with PCD and SCLC had one or more antibodies that indicate the presence of this tumor. In these patients, VGCC-ab and SOX1-ab occur tightly associated. SOX1-ab are predictors of SCLC in ataxia patients with a specificity of 100% and sensitivity of 49%. Unlike limbic encephalitis with SCLC, antibodies to cell surface antigens other than VGCC-ab, are infrequent and do not predict response to treatment. 相似文献
35.
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in most eubacteria and plants and has remarkable biotechnological interest. However, only the first steps of this pathway have been determined. Using bioinformatic and genetic approaches, we have identified gcpE as a novel gene of the MEP pathway. The distribution of this gene in bacteria and plants strictly parallels that of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, which catalyses the first committed step of the MEP pathway. Our data demonstrate that the gcpE gene is essential for the MEP pathway in Escherichia coli and indicate that this gene is required for the trunk line of the isoprenoid biosynthetic route. 相似文献
36.
Sarela García‐Santamarina Susanna Boronat José Ayté Elena Hidalgo 《Molecular microbiology》2013,90(5):1113-1124
Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over‐oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2O2 stress decreases by 100‐fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid. 相似文献
37.
Pehun Pereyra Gerber Lidia M. Duncan Edward JD Greenwood Sara Marelli Adi Naamati Ana Teixeira-Silva Thomas WM Crozier Ildar Gabaev Jun R. Zhan Thomas E. Mulroney Emily C. Horner Rainer Doffinger Anne E. Willis James ED Thaventhiran Anna V. Protasio Nicholas J. Matheson 《PLoS pathogens》2022,18(2)
Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies. 相似文献
38.
Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase 总被引:2,自引:0,他引:2 下载免费PDF全文
Leivar P González VM Castel S Trelease RN López-Iglesias C Arró M Boronat A Campos N Ferrer A Fernàndez-Busquets X 《Plant physiology》2005,137(1):57-69
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants. 相似文献
39.
Enfissi EM Fraser PD Lois LM Boronat A Schuch W Bramley PM 《Plant biotechnology journal》2005,3(1):17-27
The genetic manipulation of both the mevalonic acid (MVA) and methylerythritol-4-phosphate (MEP) pathways, leading to the formation of isopentenyl diphosphate (IPP), has been achieved in tomato using 3-hydroxymethylglutaryl CoA (hmgr-1) and 1-deoxy-d-xylulose-5-phosphate synthase (dxs) genes, respectively. Transgenic plants containing an additional hmgr-1 from Arabidopsis thaliana, under the control of the cauliflower mosaic virus (CaMV) 35S constitutive promoter, contained elevated phytosterols (up to 2.4-fold), but IPP-derived isoprenoids in the plastid were unaltered. Transgenic lines containing a bacterial dxs targeted to the plastid with the tomato dxs transit sequence resulted in an increased carotenoid content (1.6-fold), which was inherited in the next generation. Phytoene and beta-carotene exhibited the greatest increases (2.4- and 2.2-fold, respectively). Extra-plastidic isoprenoids were unaffected in these lines. These data are discussed with respect to the regulation, compartmentalization and manipulation of isoprenoid biosynthetic pathways and their relevance to plant biotechnology. 相似文献
40.
Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development 总被引:6,自引:0,他引:6 下载免费PDF全文
Rodríguez-Concepción M Forés O Martinez-García JF González V Phillips MA Ferrer A Boronat A 《The Plant cell》2004,16(1):144-156
Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. In at least some plants (including Arabidopsis), common precursors are exchanged between the cytosol and the plastid. However, little is known about the signals that coordinate their biosynthesis and exchange. To identify such signals, we arrested seedling development by specifically blocking the MVA pathway with mevinolin (MEV) or the MEP pathway with fosmidomycin (FSM) and searched for MEV-resistant Arabidopsis mutants that also could survive in the presence of FSM. Here, we show that one such mutant, rim1, is a new phyB allele (phyB-m1). Although the MEV-resistant phenotype of mutant seedlings is caused by the upregulation of MVA synthesis, its resistance to FSM most likely is the result of an enhanced intake of MVA-derived isoprenoid precursors by the plastid. The analysis of other light-hyposensitive mutants showed that distinct light perception and signal transduction pathways regulate these two differential mechanisms for resistance, providing evidence for a coordinated regulation of the activity of the MVA pathway and the crosstalk between cell compartments for isoprenoid biosynthesis during the first stages of seedling development. 相似文献