首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   14篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   4篇
  1992年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1916年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
11.

Background

The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems.

Results

This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability.

Conclusions

Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.  相似文献   
12.
Ixodes ricinus is the main vector for important infectious diseases in both humans and in animals. Microsatellite loci were isolated from a dinucleotide‐enriched library made from I. ricinus sampled in Norway. Seventeen polymorphic microsatellites were further characterized among 24 individuals sampled from an island in the Oslofjord region. The number of observed alleles ranged from two to 17 and the observed heterozygosities between 0.10 and 0.83. Analysis of family materials gives evidence of non‐Mendelian inheritance of several of the characterized loci, among which most could be explained by presence of null alleles.  相似文献   
13.
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in␣DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.  相似文献   
14.
Observations on the bioecology and damage of Teratopactus nodicollis Boheman on Phaseolus vulgaris were carried out on field samples by assessing the number of larvae and root damage in 40?ha of a dry bean field from the Federal District, Brazil (16°4??28.41???W; 47°30??21.13???S). Larvae caused the greatest damage at the stage of germination, emergence, and primary leaves, producing 50?% stand reduction. Most larvae pupated in August and September, and adult emergence occurred in middle October. Some larvae were infected with the fungus Metarhizium spp., a biological agent that would be naturally controlling this insect.  相似文献   
15.
A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.  相似文献   
16.
Carbazole derivatives show anti-cancer activity and are of great interest for drug development. In this study, we synthesized and analyzed several new alkylamide derivatives of racemocin B, a natural indolo[3,2-a]carbazole molecule originally isolated from the green alga Caulerpa racemose. Several alkylamide derivatives were found to exhibit moderate to strong growth inhibition against human breast cancer cell lines. They induced G2/M cell cycle arrest and apoptosis in the aggressive triple-negative breast cancer cell line MDA-MB-231. Among these derivatives, compound 25 with the lowest IC50 induced cell death by suppressing autophagy. This was accompanied by inhibition of autophagic flux and accumulation of autophagy protein 1 light chain 3, LC3II, and p62. The novel alkylamide derivative offers a potential new treatment for human breast cancer.  相似文献   
17.
The plastidial MEP pathway: unified nomenclature and resources   总被引:1,自引:0,他引:1  
In plants, the plastid-localized 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway provides the precursors for the synthesis of isoprenoid hormones, monoterpenes, carotenoids and the side chain of chlorophylls, tocopherols and prenylquinones. As a result of the fast progress in the elucidation and characterization of the pathway (mainly by genetic approaches in Escherichia coli and Arabidopsis thaliana), different names have been used in the literature to designate the orthologous bacterial and plant genes and the corresponding null and partial loss-of-function mutants. This has led to a confusing variety of naming conventions in this field. Here, we propose a reorganization of the various naming systems with the aim of facilitating the dissemination and sharing of genetic resources and tools central to plant isoprenoid research.  相似文献   
18.
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC‐AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water‐balance‐related parameters. Temperature‐dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long‐term investments are required.  相似文献   
19.
During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages.Chromoplasts are plastids specialized in the production and accumulation of carotenoids, conferring color to many fruits and flowers. During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into chromoplasts in a process that involves the dismantling of the photosynthetic apparatus and a massive synthesis and deposition of lycopene (Camara et al., 1995). Chromoplasts show a barely studied respiratory process, first reported for daffodil (Narcissus pseudonarcissus) chromoplasts and called chromorespiration, which consists of a membrane-bound redox pathway associated with carotenoid desaturation and results in oxygen uptake activity (Nievelstein et al., 1995). The most likely oxidase involved in this respiratory activity is the plastidial terminal oxidase (PTOX), a plastoquinol oxidase homologous to the mitochondrial alternative oxidase (AOX; Carol et al., 1999; Wu et al., 1999). According to its role in chromorespiration and in carotenoid biosynthesis, the expression of PTOX increases during the ripening process of tomato and bell pepper (Capsicum annuum) fruits (Josse et al., 2003), in parallel to chromoplast differentiation. PTOX has been characterized in vitro and it has been reported to be inhibited by pyrogallol analogs, specially by octyl gallate (Ogal; Josse et al., 2000). In vivo, PTOX has been studied mainly in chloroplasts. PTOX not only participates in carotenoid biosynthesis in chloroplasts but is also involved in chlororespiration, an electron transport chain present in thylakoids that shares plastoquinone with the photosynthetic electron transport chain (Carol and Kuntz, 2001; McDonald et al., 2011).In daffodil chromoplast homogenates (Nievelstein et al., 1995) as well as in isolated tomato fruit chromoplasts (Pateraki et al., 2013), NAD(P)H acts as an electron donor for chromorespiration, indicating the participation of NAD(P)H plastoquinone oxidoreductase activity. Considering that tomato fruit chromoplasts derive from chloroplasts, it is possible that some components of the chromoplastic redox pathway could originate from chlororespiration, such as the NAD(P)H:plastoquinone-reductase complex (NDH), which could act as the electron entrance. However, the enzymes involved in chromorespiration are not well known. It was also reported that the oxygen uptake activity of daffodil chromoplast homogenates was sensitive to the classic uncoupler 2,4-dinitrophenol (Nievelstein et al., 1995), and this observation led to the proposal that chromorespiration could be linked to membrane energization. Morstadt et al. (2002) found that liposomes containing daffodil chromoplast proteins and energized by an acid-base transition were able to produce ATP through a chemiosmotic mechanism, demonstrating that daffodil chromoplasts contain a functional H+-ATP synthase complex. We recently reported that isolated chromoplasts from tomato fruits can synthesize ATP de novo (Pateraki et al., 2013). This process is dependent on an ATP synthase complex containing an atypical γ-subunit without the regulatory dithiol domain, which may be active using lower proton gradients than those present in the chloroplast (Pateraki et al., 2013). This finding is consistent with proteomic analyses that reveal that several proteins related to electron transport and ATP production are present in chromoplasts of ripe fruits, like ATP synthase, some subunits of the NDH complex, and the cytochrome b6f complex (Barsan et al., 2012; Wang et al., 2013).Several anabolic pathways that require ATP and reducing agents are active in ripe fruit chromoplasts, such as synthesis of carotenoids, lipids (glycolipids, phospholipids, and sterols), and the shikimate pathway (Bian et al., 2011; Angaman et al., 2012). On the other hand, the ATP synthesis capacity of mitochondria in ripe fruit is low, because its membrane potential diminishes during ripening as a result of the increasing activity of the mitochondrial uncoupling protein (Almeida et al., 1999; Costa et al., 1999). This fact raised the question of whether chromorespiration could play a significant role in the production of ATP at the last stages of ripening. To our knowledge, the ATP synthesis rates of chromoplasts have not been quantified; therefore, it was uncertain whether the endogenous production could provide ATP in significant amounts to address the energy requirements of the chromoplasts. Moreover, there was no information about the quantitative contribution of chromorespiration to total fruit tissue respiration. This work aimed to deepen the study of the chromorespiratory process in isolated tomato fruit chromoplasts and to analyze the relative participation of this pathway in the overall respiration and ATP levels of fruit pericarp in vivo.  相似文献   
20.
Abstract: Morphological and reproductive features and cell wall ultrastructure and biochemistry of Proterozoic acritarchs are used to determine their affinity to modern algae. The first appearance datum of these microbiota is traced to infer a minimum age of the divergence of the algal classes to which they may belong. The chronological appearance of microfossils that represent phycoma‐like and zygotic cysts and vegetative cells and/or aplanospores, respectively, interpreted as prasinophyceaen and chlorophyceaen microalgae is related to the Viridiplantae phylogeny. An inferred minimum age of the Chlorophyte origin is before c. 1800 Ma, the Prasinophyceae at c. 1650 Ma and the Chlorophyceae at c. 1450 Ma. These divergence times differ from molecular clock estimates, and the palaeontological evidence suggests that they are older.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号