首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   26篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   15篇
  2014年   13篇
  2013年   21篇
  2012年   33篇
  2011年   38篇
  2010年   17篇
  2009年   19篇
  2008年   37篇
  2007年   34篇
  2006年   22篇
  2005年   18篇
  2004年   23篇
  2003年   25篇
  2002年   30篇
  2001年   1篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   9篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有476条查询结果,搜索用时 31 毫秒
431.
Inhibition of the kinase suppressor of ras-1 (KSR1) gene by continuous infusion of phosphorothioate antisense oligonucleotides (ODNs) prevented growth of K-Ras-dependent human PANC-1 pancreatic and A549 non-small-cell lung carcinoma xenografts in nude mice, effected regression of established PANC-1 tumors and inhibited A549 lung metastases, all without apparent toxicity. These studies suggest KSR1 antisense ODNs as a treatment for Ras-dependent human malignancies, in particular pancreatic cancer, which lacks effective curative therapy.  相似文献   
432.
433.
Tolerance mechanisms are important in the ability of cells to cope with DNA damage. In E. coli, the two main damage tolerance mechanisms are recombinational repair (RR) and translesion replication (TLR). Here we show that RR effectively repairs gaps opposite DNA lesions. When both mechanisms are functional, RR predominates over TLR, being responsible for 86% of the repair events. This predominance of RR is determined by the high concentration of RecA present under SOS conditions, which causes a differential inhibition of TLR. Further inhibition of TLR is caused by the RecA-catalyzed strand exchange reaction of RR. This molecular hierarchy in the tolerance of DNA lesions ensures that the nonmutagenic RR predominates over the mutagenic TLR, thereby contributing to genetic stability.  相似文献   
434.
A nitronyl nitroxide radical covalently linked to an organic fluorophore, pyrene, was used to detect nitric oxide (NO) from freshly excited tissues. This approach is based on the phenomenon of the intramolecular fluorescence quenching of the fluorophore fragment by the nitroxide. The pyrene-nitronyl (PN) reacts with NO to yield a pyrene-imino nitroxide radical (PI) and NO(2). Conversion of PN to PI is accompanied by changes in the electron paramagnetic resonance (EPR) spectrum from a five-line pattern (two equivalent N nuclei) into a seven-line pattern (two nonequivalent N nuclei). The transformation of the EPR signal is accompanied by an increase in the fluorescence intensity since the imino nitroxide radical is a weaker quencher than the nitronyl one. The results indicate that the fluorescence measurements enable detection of nanomolar concentrations of NO compared to a sensitivity threshold of only several micromolar for the EPR technique. The method was applied to the determination of NO and S-nitroso compounds in tissue from pig trachea epithelia. The measured basal flux of S-nitroso compounds obtained from the tissues was about 1.2 nmol/g x min, and NO-synthase stimulated by extracellular adenosine 5'-triphosphate produced NO flux of 0.9 nmol/g x min.  相似文献   
435.
436.
The phosphorylation profile of ciliary proteins under basal conditions and after stimulation by extracellular ATP was investigated in intact tissue and in isolated cilia from porcine airway epithelium using anti-phosphoserine and anti-phosphothreonine specific antibodies. In intact tissue, several polypeptides were serine phosphorylated in the absence of any treatment (control conditions). After stimulation by extracellular ATP, changes in the phosphorylation pattern were detected on seven ciliary polypeptides. Serine phosphorylation was enhanced for three polypeptides (27, 37, and 44 kD), while serine phosphorylation was reduced for four polypeptides (35, 69, 100, and 130 kD). Raising intracellular Ca2+ with ionomycin induced identical changes in the protein phosphorylation profile. Inhibition of the NO pathway by inhibiting either NO synthase (NOS), guanylyl cyclase (GC), or cGMP-dependent protein kinase (PKG) abolished the changes in phosphorylation induced by ATP. The presence of PKG within the axoneme was demonstrated using a specific antibody. In addition, in isolated permeabilized cilia, submicromolar concentrations of cGMP induced protein phosphorylation. Taken together, these results suggest that the axoneme is an integral part of the intracellular NO pathway. The surprising observation that ciliary activation is accompanied by sustained dephosphorylation of ciliary proteins via NO pathway was not detected in isolated cilia, suggesting that the protein phosphatases were either lost or deactivated during the isolation procedure. This work reveals that any pharmacological manipulation that abolished phosphorylation and dephosphorylation also abolished the enhancement of ciliary beating. Thus, part or all of the phosphorylated polypeptides are likely directly involved in axonemal regulation of ciliary beating.  相似文献   
437.
438.
Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.  相似文献   
439.
Semen lipid composition was examined in young and mature bulls. Given the specific roles of various semen compartments (i.e., seminal fluid, sperm head, and sperm tail) during fertilization, we hypothesized that altered fatty acid and cholesterol composition of a specific compartment might impair semen quality and sperm function. Semen samples were collected from five mature and five young Holstein Friesian bulls during the winter (December–January). Semen was evaluated by computerized sperm-quality analyzer for bulls and was centrifuged to separate the sperm from the seminal fluid. The sperm fraction was sonicated to separate its head and tail compartments. Cold extraction of lipids was performed, and fatty acids and cholesterol were identified and quantified by gas chromatography. Semen physiological features (concentration, motility, and progressive motility) did not differ between mature and young bulls. However, lipid composition within fractions varied between groups, with prominent impairments in the head compartment. In particular, the proportions of polyunsaturated fatty acids, omega-3 fatty acids, and docosahexaenoic acid in the intact sperm; seminal fluid; and sperm head were lower in semen collected from mature bulls than in that from young bulls. The finding suggests an age-differential absorption and/or metabolism through spermatogenesis. Reduced proportions of major fatty acids in mature bulls might reduce membrane fluidity, which in turn might affect the ability to undergo cryopreservation and/or oocyte-sperm fusion through fertilization.  相似文献   
440.
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4‐overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild‐type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4‐overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4‐binding element (ABE), have also been identified in other ABI4‐repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号