首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   26篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   15篇
  2014年   13篇
  2013年   21篇
  2012年   33篇
  2011年   38篇
  2010年   17篇
  2009年   19篇
  2008年   37篇
  2007年   34篇
  2006年   22篇
  2005年   18篇
  2004年   23篇
  2003年   25篇
  2002年   30篇
  2001年   1篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   9篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有475条查询结果,搜索用时 31 毫秒
101.
Unwinding the structure and function of the archaeal MCM helicase   总被引:2,自引:1,他引:1  
During chromosomal DNA replication, the replicative helicase unwinds the duplex DNA to provide the single-stranded DNA substrate for the polymerase. In archaea, the replicative helicase is the minichromosome maintenance (MCM) complex. The enzyme utilizes the energy of ATP hydrolysis to translocate along one strand of the duplex and unwind the complementary strand. Much progress has been made in elucidating structure and function since the first report on the biochemical properties of an archaeal MCM protein in 1999. We now know the biochemical and structural properties of the enzyme from several archaeal species and some of the mechanisms by which the enzyme is regulated. This review summarizes recent studies on the archaeal MCM protein and discusses the implications for helicase function and DNA replication in archaea.  相似文献   
102.
103.
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.  相似文献   
104.
The HIV-1 integrase enzyme (IN) catalyzes integration of viral DNA into the host genome. We previously developed peptides that inhibit IN in vitro and HIV-1 replication in cells. Here we present the design, synthesis and evaluation of several derivatives of one of these inhibitory peptides, the 20-mer IN1. The peptide corresponding to the N-terminal half of IN1 (IN1 1–10) was easier to synthesize and much more soluble than the 20-mer IN1. IN1 1–10 bound IN with improved affinity and inhibited IN activity as well as HIV replication and integration in infected cells. While IN1 bound the IN tetramer, its shorter derivatives bound dimeric IN. Mapping the peptide binding sites in IN provided a model that explains this difference. We conclude that IN1 1–10 is an improved lead compound for further development of IN inhibitors.  相似文献   
105.
106.
107.
Various subspecies (ssp.) of Bacillus thuringiensis (Bt) are considered the best agents known so far to control insects, being highly specific and safe, easily mass produced and with long shelf life.1 The para-crystalline body that is produced during sporulation in the exosporium includes polypeptides named δ-endotoxins, each killing a specific set of insects. The different entomopathogenic toxins of various Bt ssp. can be manipulated genetically in an educated way to construct more efficient transgenic bacteria or plants that express combinations of toxin genes to control pests.2 Joint research projects in our respective laboratories during the last decade demonstrate what can be done by implementing certain ideas using molecular biology with Bt ssp. israelensis (Bti) as a model system. Here, we describe our progress achieved with Gram-negative bacterial species, including cyanobacteria, and some preliminary experiments to form transgenic plants, mainly to control mosquitoes (Diptera), but also a particular Lepidopteran and Coleopteran pest species. In addition, a system is described by which environment-damaging genes can be removed from the recombinants thus alleviating procedures for obtaining permits to release them in nature.  相似文献   
108.
Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted flow‐induced protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)‐like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force‐dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. J. Cell. Physiol. 226: 3197–3207, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   
109.
Bacterial GTPase-activating proteins (GAPs) subvert their host's eukaryotic Rho GTPases to their own advantage. Studies of bacterial GAPs extend our understanding of the action of eukaryotic GAPs, provide new tools for studies of cytoskeletal dynamics and offer new targets for anti-bacterial drugs.  相似文献   
110.
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号