首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
31.
Several studies indicate that active oxygen species play an important role in the development of pulmonary disease (asbestosis and silicosis) after exposure to mineral dust. The present study was conducted to determine if inhaled fibrogenic minerals induced changes in gene expression and activities of antioxidant enzymes (AOE) in rat lung. Two different fibrogenic minerals were compared, crocidolite, an amphibole asbestos fiber, and cristobalite, a crystalline silicon dioxide particle. Steady-state mRNA levels, immunoreactive protein, and activities of selected AOE were measured in lungs 1-10 days after initiation of exposure and at 14 days after cessation of a 10-day exposure period. Exposure to asbestos resulted in significant increases in steady-state mRNA levels of manganese-containing superoxide dismutase (MnSOD) at 3 and 9 days and of glutathione peroxidase at 6 and 9 days. An increase in steady-state mRNA levels of copper, zinc-containing superoxide dismutase (CuZnSOD), was observed at 6 days. Exposure to asbestos also resulted in overall increased enzyme activities of catalase, glutathione peroxidase and total superoxide dismutase in lung. In contrast, silica caused a dramatic increase in steady-state levels of MnSOD mRNA at all time periods and an increase in glutathione peroxidase mRNA levels at 9 days. Activities of AOE remained unchanged in silica-exposed lungs. In both models, increases in gene expression of MnSOD correlated with increased amounts of MnSOD immunoreactive protein in lung and the pattern and extent of inflammation. These data indicate that the profiles of AOE are dissimilar during the development of experimental asbestosis or silicosis and suggest different mechanisms of lung defense in response to these minerals.  相似文献   
32.
Inflammation has been recognized as a contributing factor in the pathogenesis of some cancers. In the lung, inflammation is characterized by an influx of polymorphonuclear leukocytes (PMN) that release a variety of reactive oxygen species (ROS). The aim of the present study was to investigate the direct effect of PMN on oxidative DNA damage in lung target cells. Therefore, rat alveolar epithelial cells (RLE) were coincubated with PMN or hydrogen peroxide. Known to be correlated with the incidence of cancer, 7-hydro-8-oxo-2'deoxyguanosine (8-oxodG) was used as an effect marker for oxidative damage. Viability of the RLE, when coincubated with PMN, decreased to 43%, dependent on the ratio between PMN and RLE. After washing off PMN, 8-oxodG levels were significantly increased in RLE, but the highest levels were observed in the washed off PMN fraction. In addition, to avoid washing off procedures, immunohistochemical analysis was used to measure the 8-oxodG levels specifically in the RLE and similar results were obtained. In addition, inhibitor experiments showed that antioxidants ameliorated oxidative DNA damage. Our data provide evidence that ROS released by PMN as well as H2O2, cause oxidative DNA damage in epithelial cells.  相似文献   
33.
Starting from an alignment of all known representatives in GenBank, we designed group specific primers targeting SSU rRNA‐encoding sequences of 12 microbial taxa known to contain insect pathogens and symbionts. We tested the specificity of these primers using representative species of all 12 groups as control templates. Polymerase chain reaction amplification conditions were modified until only group‐specific templates yielded a positive signal. The presented primer pairs thus allow for the amplification of SSU rRNA‐encoding sequences representing specific microbial groups directly from the environment (a social insect host in our study). We discuss possible applications of the identified molecular tools.  相似文献   
34.
35.
A genome-wide genetic map of NB-LRR disease resistance loci in potato   总被引:1,自引:0,他引:1  
Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato.  相似文献   
36.

Background

Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC).

Results

Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau’s of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2–CCR5 cells (range 79.7–97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8–72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC.

Conclusions

The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.
  相似文献   
37.
The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.  相似文献   
38.
Cell migration is known to be triggered by constituents of the extracellular matrix such as fibronectin and by soluble mediators commonly summarized as motogens. Many growth factors such as the epidermal growth factor (EGF) have been shown to act as motogens. Recently, the secretory N-terminal portion of the beta-amyloid precursor protein (sAPP) has been identified as a keratinocyte growth factor. Hence, in this study we analysed whether sAPP stimulates also keratinocyte migration employing the stroboscopic cell motility assay. The migration velocity as well as the frequency of lamellipodia protrusion and ruffle formation were increased about two-fold thus corresponding to the effect of EGF. Using a newly developed beta1-integrin migration track assay we observed that sAPP increased the proportion of migrating keratinocytes and their directional persistence. sAPP appeared to operate synergistically with fibronectin with respect to its motogenic effect. Using a modified Boyden chamber assay we showed that sAPP besides its chemokinetic effect functions as a chemoattractant. Like EGF, sAPP exerted its motogenic effect through the activation of Rac kinase but the receptor for sAPP appears to be distinct. The results suggest that sAPP operates as a motogen in the human epidermis, where it may participate in the regulation of reepithelialization during wound healing.  相似文献   
39.
By sequencing part of the wsp gene of a series of clones, we detected an unusually high diversity of nine Wolbachia strains in queens of three species of leafcutter ants. Up to four strains co-occurred in a single ant. Most strains occurred in two clusters (InvA and InvB), but the social parasite Acromyrmex insinuator hosted two additional infections. The multiple Wolbachia strains may influence the expression of reproductive conflicts in leafcutter ants, but the expected turnover of infections may make the cumulative effects on host ant reproduction complex. The additional Wolbachia infections of the social parasite A. insinuator were almost certainly acquired by horizontal transmission, but may have facilitated reproductive isolation from its closely related host.  相似文献   
40.
Some Tetraponera ants (Formicidae, Pseudomyrmecinae) subsist almost entirely on amino acid deficient honeydew secretions of pseudococcids and harbour a dense aggregation of bacterial symbionts in a unique pouch-shaped organ at the junction of the midgut and the intestine. The organ is surrounded by a network of intruding tracheae and Malpighian tubules, suggesting that these bacteria are involved in the oxidative recycling of nitrogen-rich metabolic waste. We have examined the ultrastructure of these bacteria and have amplified, cloned and sequenced ribosomal RNA-encoding genes, showing that the ant pouch contains a series of close relatives of Flavobacteria and Rhizobium, Methylobacterium, Burkholderia and Pseudomonas nitrogen-fixing root-nodule bacteria. We argue that pouch bacteria have been repeatedly 'domesticated' by the ants as nitrogen-recycling endosymbionts. This ant-associated community of mutualists is, to our knowledge, the first finding of symbionts related to root-nodule bacteria in animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号