首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3254篇
  免费   265篇
  国内免费   2篇
  3521篇
  2023年   8篇
  2022年   44篇
  2021年   56篇
  2020年   45篇
  2019年   55篇
  2018年   75篇
  2017年   63篇
  2016年   96篇
  2015年   156篇
  2014年   175篇
  2013年   190篇
  2012年   276篇
  2011年   237篇
  2010年   176篇
  2009年   146篇
  2008年   206篇
  2007年   237篇
  2006年   200篇
  2005年   179篇
  2004年   202篇
  2003年   151篇
  2002年   139篇
  2001年   29篇
  2000年   21篇
  1999年   17篇
  1998年   34篇
  1997年   20篇
  1996年   22篇
  1995年   20篇
  1994年   20篇
  1993年   14篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   15篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   7篇
  1982年   10篇
  1981年   9篇
  1980年   11篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1974年   6篇
  1966年   5篇
  1931年   6篇
排序方式: 共有3521条查询结果,搜索用时 0 毫秒
91.
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting.  相似文献   
92.
93.
94.
Amyloid fibrils are stable aggregates of misfolded proteins and polypeptides that are insoluble and resistant to protease activity. Abnormal formation of amyloid fibrils in vivo may lead to neurodegenerative disorders and other systemic amyloidosis, such as Alzheimer’s, Parkinson’s, and atherosclerosis. Because of their clinical importance, amyloids are under intense scientific research. It is believed that short polypeptide segments within proteins are responsible for the transformation of correctly folded proteins into parts of larger amyloid fibrils and that this transition is modulated by environmental factors, such as pH, salt concentration, interaction with the cell membrane, and interaction with metal ions. Most studies on amyloids focus on the amyloidogenic sequences. The focus of this study is on the structure of the amyloidogenic α-helical segments because the α-helical secondary structure has been recognized to be a key player in different stages of the amyloidogenesis process. We have previously shown that the α-helical conformation may be expressed by two parameters (θ and ρ) that form orthogonal coordinates based on the Ramachandran dihedrals (φ and ψ) and provide an illuminating interpretation of the α-helical conformation. By performing statistical analysis on α-helical conformations found in the Protein Data Bank, an apparent relation between α-helical conformation, as expressed by θ and ρ, and amyloidogenicity is revealed. Remarkably, random amino acid sequences, whose helical structures were obtained from the most probable dihedral angles, revealed the same dependency of amyloidogenicity, suggesting the importance of α-helical structure as opposed to sequence.  相似文献   
95.
96.
5-Aminolevulinic acid (ALA) synthesis has been shown to be the rate limiting step of tetrapyrrole biosynthesis. Glutamyl-tRNA reductase (GluTR) is the first committed enzyme of plant ALA synthesis and is controlled by interacting regulators, such as heme and the FLU protein. Induced inactivation of the HEMA1 gene encoding GluTR by RNAi expression in tobacco resulted in a reduced activity of Mg chelatase and Fe chelatase indicating a feed-forward regulatory mechanism that links ALA synthesis posttranslationally with late enzymes of tetrapyrrole biosynthesis (Hedtke et al., 2007). Here, the regulatory impact of GluTR was investigated by overexpression of AtHEMA1 in Arabidopsis and tobacco plants. Light-dependent ALA synthesis cannot benefit from an up to 7-fold induced expression of GluTR in Arabidopsis. While constitutive AtHEMA1 overexpression in tobacco stimulates ALA synthesis by 50-90% during light-exposed growth of seedlings, no increase in heme and chlorophyll contents is observed. HEMA1 overexpression in etiolated and dark-grown Arabidopsis and tobacco seedlings leads to additional accumulation of protochlorophyllide. As excessive accumulation of GluTR does not correlate with increased ALA formation, it is hypothesized that ALA synthesis is additionally limited by other effectors that balance the allocation of ALA with the activity of enzymes of chlorophyll and heme biosynthesis.  相似文献   
97.
Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in the oxidative decarboxylation of either pyruvate, α-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psychomotor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift mutation resulting in decreased TPK protein levels.  相似文献   
98.
Here we present the first observation of the impact of the invasive Caulerpa racemosa var. cylindracea on native photophilic sponge species in the Adriatic Sea, with special focus on Sarcotragus spinosulus. Caulerpa racemosa var. cylindracea is able to completely overgrow the sponge, developing an exceptionally thick canopy with a maximum measured density of 1,887 m of stolons m−2 and 40,561 fronds m−2. Necrosis of the sponge surface was significantly correlated with the algal dry biomass, frond number and stolon length. Dense algal canopy, penetration of the algal stolon and rhizoids into the sponge oscula and covering of the ostiae probably diminishes the seawater circulation through the sponge and consequently results in its smothering and even death. We suggest that chemotropism is the reason why C. racemosa penetrates the sponge oscula and establishes such dense canopy on the sponge.  相似文献   
99.
100.
Abstract: Activation of the N-methyl-d -aspartate (NMDA) subtype of glutamate receptor increases levels of intracellular calcium and can lead to stimulation of protein kinase C activity. Several reports have demonstrated that stimulation of protein kinase C can, in turn, increase electrophysiological responses to NMDA in certain cells or in oocytes expressing certain NMDA receptor subunits. In the present study, the effects of protein kinase C activation on NMDA receptor-mediated increases in intracellular Ca2+ levels were investigated in primary cultures of rat cerebellar granule cells using fura-2 fluorescence spectroscopy. Pretreatment of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), but not the inactive analogue 4α-phorbol 12-myristate 13-acetate, inhibited NMDA-induced increases in intracellular Ca2+ levels. Coincubation of cells with PMA and the kinase inhibitor staurosporine or calphostin C blocked the PMA effect. The potency of NMDA was reduced twofold, and the potency of the NMDA receptor coagonist, glycine, to enhance the response to NMDA was decreased fourfold by pretreatment of cells with PMA. The effect on glycine was mimicked by pretreatment with okadaic acid, a protein phosphatase inhibitor. PMA treatment did not significantly alter Mg2+ inhibition of the NMDA response but decreased the potency of the competitive antagonist CGS-19755. These data suggest that, in cerebellar granule cells, the function of the NMDA receptor may be subject to feedback inhibition by protein kinase C stimulation. Under physiological conditions, this inhibition may result from a decreased effectiveness of the endogenous coagonists, glutamate and glycine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号