首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   20篇
  2013年   12篇
  2012年   13篇
  2011年   14篇
  2010年   11篇
  2009年   15篇
  2008年   18篇
  2007年   6篇
  2006年   13篇
  2005年   6篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  1995年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
31.
The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem.  相似文献   
32.
Inventories of soil C pools are still lacking from tropical sites. Our objective was to assess total C and N concentrations in the different mineral soil fractions down to 50 cm depth in relation to selected physical and chemical properties of 5 ecosystems at La Flor Sustainable Center in Guanacaste, Costa Rica. The ecosystems studied were a derived savanna with scattered trees, a gallery forest, an abandoned Mango indigofera L. plantation, a Citrus sp. plantation, and a Saccharum officinarum L. (sugarcane) plantation. Significant differences were found for the main fixed factor ecosystem for all variables analyzed (ANOVA). The TSC concentration was significantly higher in the sugarcane plantation compared to the rest of land use systems. The TSC concentration decreased significantly with increase in depth in all ecosystems and ranged from 20.3–38.3 to 4.3–20.9 g kg−1 in the 0–10 and 40–50 cm depth, respectively. In all cases, the clay + silt fraction (<50 μm) contained the highest C concentration. N concentration (0–10 cm depth) at La Flor ranged from 0.32 to 0.19%, and decreased in the order sugarcane > Curatella savanna > Mango and Citrus plantations > gallery forest. A principal component analysis (PCA) performed with all variables studied showed that the ordination of land uses (ecosystems) in the factorial plane defined by the first two axes was significant (Monte Carlo permutation test, P < 0.0001). The highest TSC pool down to 50 cm depth was obtained in the sugarcane plantation (160 Mg C ha−1) while less C was found in the rest of ecosystems, i.e. from 66 (gallery forest) to 80 Mg C ha−1 (Curatella savanna). The TSC concentration obtained in the sugarcane plot is likely the result of the incorporation of surface residues into the soil that would have otherwise been lost through burning, which is the current practice in the region. Further studies on C stabilization in the clay fraction are thus needed to test the hypothesis of soil C enrichment due to residue management. Finally, trade-offs are to be considered for both preservation of the fragile dTf and the productivity of derived land uses that increases soil C at the same time.  相似文献   
33.
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.  相似文献   
34.
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets.  相似文献   
35.
Mycobacteria show peculiar aggregated outgrowth like biofilm on the surface of solid or liquid media. Biofilms harbor antibiotic resistant bacteria in a self-produced extracellular matrix that signifies the bacterial fate to sedentary existence. Despite years of research, very little is known about the mechanisms that contribute to biofilm formation. LuxS has been previously known to play a role in biofilm formation in Autoinducer-2 dependent manner. We here show the effect of LuxS product-homocysteine, on the biofilm forming ability of non-tuberculous mycobacteria, Mycobacterium smegmatis and Mycobacterium bovis BCG showing AI-2 independent phenotypic effect of LuxS. Exogenous supplementation of homocysteine in the culture media leads to aberrant cording, pellicle outgrowth, and biofilm formation. Thus, our study contributes to the better understanding of the mechanism of mycobacterial biofilm formation and sheds light on the role of LuxS product homocysteine. In addition, we highlight the contribution of activated methyl cycle in bacterial quorum sensing.  相似文献   
36.
Bacillus anthracis causes anthrax in human and animals. Both, signaling system such as two component system and endogenous chaperone system such as GroEL–GroES help bacteria to cope with the environmental challenges. Such molecular chaperones are the stress induced proteins that help bacteria to override unfavorable conditions by their moonlighting functions. Previous reports showed that PrkC and PrpC, the Ser/Thr kinase–phosphatase pair in B. anthracis, control phosphorylation of GroEL and regulate biofilm formation. In this study, we show that GroEL is involved in the folding of PrkC to active form. The proteins (GroEL, PrkC and PrpC) were expressed and purified by affinity chromatography. Purified GroEL was used for refolding of denatured PrkC and PrpC and observed that GroEL refolds PrkC but not PrpC as measured by their enzymatic activity. We also observed that purification of GroEL with six histidine tag using Cobalt-Agarose resin yielded superior quality GroEL protein with negligible contamination of non-specific proteins. Thus, cobalt resin can be a better choice for purification of many histidine tagged proteins, where Ni-NTA does not work very well.  相似文献   
37.
An effort was made in the present study to identify the main effect and epistatic quantitative trait locus (QTL) for the morphological and yield-related traits in peanut. A recombinant inbred line (RIL) population derived from TAG 24 × GPBD 4 was phenotyped in seven environments at two locations. QTL analysis with available genetic map identified 62 main-effect QTLs (M-QTLs) for ten morphological and yield-related traits with the phenotypic variance explained (PVE) of 3.84–15.06%. Six major QTLs (PVE >?10%) were detected for PLHT, PPP, YPP, and SLNG. Stable M-QTLs appearing in at least two environments were detected for PLHT, LLN, YPP, YKGH, and HSW. Five M-QTLs governed two traits each, and 16 genomic regions showed co-localization of two to four M-QTLs. Intriguingly, a major QTL reported to be linked to rust resistance showed pleiotropic effect for yield-attributing traits like YPP (15.06%, PVE) and SLNG (13.40%, PVE). Of the 24 epistatic interactions identified across the traits, five interactions involved six M-QTLs. Three interactions were additive × additive and remaining two involved QTL × environment (QE) interactions. Only one major M-QTL governing PLHT showed epistatic interaction. Overall, this study identified the major M-QTLs for the important productivity traits and also described the lack of epistatic interactions for majority of them so that they can be conveniently employed in peanut breeding.  相似文献   
38.
Needles of seven cultivated clones (C1 – C7) of Juniperus communis at lower altitude and three wild Juniperus species (Jcommunis, Jrecurva and Jindica) at higher altitudes were investigated comparatively for their essential oils (EOs) yields, chemical composition, cytotoxic and antibacterial activities. The EOs yields varied from 0.26 to 0.56% (v/w) among samples. Sixty‐one volatile components were identified by gas chromatography‐mass spectrometry (GC/MS) and quantified using gas chromatography GC (FID) representing 82.5 – 95.7% of the total oil. Monoterpene hydrocarbons (49.1 – 82.8%) dominated in all samples (α‐pinene, limonene and sabinene as major components). Principal component analysis (PCA) of GC data revealed that wild and cultivated Juniperus species are highly distinct due to variation in chemical composition. Jcommunis (wild species) displayed cytotoxicity against SiHa (human cervical cancer), A549 (human lung carcinoma) and A431 (human skin carcinoma) cells (66.4 ± 2.2%, 74.4 ± 1.4% and 57.4 ± 4.0%), respectively, at 200 μg/ml. EOs exhibited better antibacterial activity against Gram‐positive bacteria than against Gram‐negative bacteria with the highest zone of inhibition against Staphylococcus aureus MTCC 96 (19.2 ± 0.7) by clone‐7. As per the conclusion of the findings, EOs of clone‐2, clone‐5 and clone‐7 can be suggested to the growers of lower altitude, as there is more possibility of uses of these EOs in food and medicinal preparations.  相似文献   
39.
40.
Fanconi anemia complementation groups – I (FANCI) protein facilitates DNA ICL (Inter-Cross-link) repair and plays a crucial role in genomic integrity. FANCI is a 1328 amino acids protein which contains armadillo (ARM) repeats and EDGE motif at the C-terminus. ARM repeats are functionally diverse and evolutionarily conserved domain that plays a pivotal role in protein–protein and protein–DNA interactions. Considering the importance of ARM repeats, we have explored comprehensive in silico and in vitro approach to examine folding pattern. Size exclusion chromatography, dynamic light scattering (DLS) and glutaraldehyde crosslinking studies suggest that FANCI ARM repeat exist as monomer as well as in oligomeric forms. Circular dichroism (CD) and fluorescence spectroscopy results demonstrate that protein has predominantly α- helices and well-folded tertiary structure. DNA binding was analysed using electrophoretic mobility shift assay by autoradiography. Temperature-dependent CD, Fluorescence spectroscopy and DLS studies concluded that protein unfolds and start forming oligomer from 30°C. The existence of stable portion within FANCI ARM repeat was examined using limited proteolysis and mass spectrometry. The normal mode analysis, molecular dynamics and principal component analysis demonstrated that helix-turn-helix (HTH) motif present in ARM repeat is highly dynamic and has anti-correlated motion. Furthermore, FANCI ARM repeat has HTH structural motif which binds to double-stranded DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号