首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
排序方式: 共有79条查询结果,搜索用时 125 毫秒
31.
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.  相似文献   
32.
Intrinsically disordered proteins dynamically sample a wide conformational space and therefore do not adopt a stable and defined three-dimensional conformation. The structural heterogeneity is related to their proper functioning in physiological processes. Knowledge of the conformational ensemble is crucial for a complete comprehension of this kind of proteins. We here present an approach that utilizes dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of sparsely isotope-labeled proteins in frozen solution to take snapshots of the complete structural ensembles by exploiting the inhomogeneously broadened line-shapes. We investigated the intrinsically disordered protein α-synuclein (α-syn), which plays a key role in the etiology of Parkinson’s disease, in three different physiologically relevant states. For the free monomer in frozen solution we could see that the so-called “random coil conformation” consists of α-helical and β-sheet-like conformations, and that secondary chemical shifts of neighboring amino acids tend to be correlated, indicative of frequent formation of secondary structure elements. Based on these results, we could estimate the number of disordered regions in fibrillar α-syn as well as in α-syn bound to membranes in different protein-to-lipid ratios. Our approach thus provides quantitative information on the propensity to sample transient secondary structures in different functional states. Molecular dynamics simulations rationalize the results.  相似文献   
33.
34.
Adaptation of a freshwater anammox population to high salinity wastewater   总被引:18,自引:0,他引:18  
For the successful application of anaerobic ammonium oxidation (anammox) in wastewater practice it is important to know how to seed new anammox reactors with biomass from existing reactors. In this study, a new high salinity anammox reactor was inoculated with biomass from a freshwater system. The changes in activity and population shifts were monitored. It was shown that freshwater anammox bacteria could adapt to salt concentrations as high as 30 gl(-1) provided the salt concentration was gradually increased. Higher salt concentrations reversibly inhibited anammox bacteria. The nitrogen removal efficiency and maximum anammox activity of the salt adapted sludge was very similar to the reference freshwater sludge. Fluorescence in situ hybridization analysis revealed that the freshwater anammox species Candidatus "Kuenenia stuttgartiensis" was the dominant in both salt adapted sludge and freshwater sludge. These results show that gradual adaptation may be the key to successful seeding of anammox bioreactors.  相似文献   
35.
A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.  相似文献   
36.
37.
38.
Nitrogen removal with the anaerobic ammonium oxidation process   总被引:3,自引:0,他引:3  
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of O2. Nitritation–anammox bioreactors provide a cost-effective and environment-friendly alternative to conventional nitrification/denitrification nitrogen removal systems. Currently, this process is only applied for ammonium removal from wastewater with high ammonium load and temperature. Nevertheless, recent results obtained with laboratory-scale bioreactors suggest new possible routes of application of the Nitritation–anammox technology including (1) municipal wastewater treatment, removal of (2) methane in combination with nitrite-reducing methane-oxidizing bacteria, (3) nitrate coupled to organic acid oxidation and (4) nitrogen oxides. The current review summarizes the state-of-the-art of the application of Nitritation–anammox systems and discusses the possibilities of utilizing these recent results for wastewater treatment.  相似文献   
39.
Eighty-five putative Pseudomonas isolates were obtained from various raw milk and pasteurized milk samples using Pseudomonas CFC agar. Among them, 36 isolates were identified as Pseudomonas fluorescens, and one isolate was identified as Pseudomonas putida. Lipase activity of the strains was quantitatively measured by the spectrophotometric method using p-nitrophenyl palmitate (p-NPP) as substrate. Detected lipase activity of the strains was between 10.03 U/mL and 22.16 U/mL. Pseudomonas fluorescens RB02-3 possessed the highest lipase activity. The extracellular lipase of P. fluorescens RB02-3 strain was homogeneously purified using a combination of ammonium sulfate precipitation, dialysis, and gel filtration column chromatography. This purification procedure resulted in 2.97-fold purification with 20.3% recovery. The enzyme was characterized, and exhibited maximum activity at pH 7.0 and 50°C; after it was incubated for 1 h it was activated in the presence of hexane, ethyl acetate, isopropanol, and ethanol and remained stable after the incubation was extended for 2 hr. The lipase was slightly inhibited in the presence of Zn2+, Co2+, Cu2+, Ni2+ salts, and ethylenediamine tetraacetic acid (EDTA), whereas Cd2+, sodium dodecyl sulfate (SDS), and Tween-80 had no effect on its activity.  相似文献   
40.
For teeth as for any organ, knowledge of normal development is essential for the proper interpretation of developmental anomalies in mutant mice. It is generally accepted that tooth formation is initiated with a single signaling center that, in the incisor region, is exclusively related to the development of the functional adult incisor. Here, using a unique combination of computer-aided three-dimensional reconstructions and whole mount in situ hybridization of mandibles from finely staged wild-type mouse embryos, we demonstrate that several Sonic hedgehog (Shh) expression domains sequentially appear in the lower incisor region during early development. In contrast to the single Shh expression domain that is widely assumed to be present in each lower incisor area at ED12.5-13.5, we identified two spatially distinct regions of Shh expression that appear in an anterior-posterior sequence during this period. The initial anterior, more superficially located Shh expression region represented the rudimentary (so-called deciduous) incisor, whereas only the later posterior deeper situated region corresponded to the prospective functional incisor. In the more advanced embryos, only this posterior Shh expression in the incisor bud was detectable as a precursor of the enamel knot. This study offers a new interpretation of published molecular data on the mouse incisor from initiation through ED13.5. We suggest that, as with Shh expression, other molecular data that have been ascribed to the progressive development of the mouse functional incisor at early stages, in fact, correspond to a rudimentary incisor whose development is aborted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号