首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
11.
12.
BACKGROUND AND RESULTS: Embryos from diabetic mice exhibit several forms of neural tube defects, including non-closure of the neural tube. In the present study, embryos collected at embryonic day 11.5 from diabetic pregnancies displayed open neural tube with architectural disruption of the surrounding tissues. The percentage of proliferating cells was found to be increased in the dorsal and ventral domains of the spinal neural tube of embryos from diabetic mice, indicating a defect in the proliferation index. We have analyzed the development of various cell types, including motoneurons, interneurons, oligodendrocytes and migrating neurons, as well as radial glial cells in the open neural tube using specific molecular markers. Immunofluorescence results revealed a significantly reduced number of Pax2+ interneurons and increased number of Isl-1+ motoneurons, as well as Olig2+ oligodendrocytes in the neural tube of embryos from diabetic mice as compared to controls. In addition, these embryos exhibited a decreased number of doublecortin positive migrating neurons and Glast/Blbp positive radial glial cells with shortened processes in the neural tube. Expression levels of several developmental control genes involved in the generation of different neuronal cell types (such as Shh, Ngn, Ngn2, Ascl1) were also found to be altered in the neural tube of embryos from diabetic mice. CONCLUSIONS: Overall, the open neural tube in embryos of diabetic mice exhibits defects in the specification of different cell types, including motoneurons and interneurons, as well as glial cells along the dorsoventral axis of the developing spinal cord. Although these defects are associated with altered expression of several development control genes, the exact mechanisms by which maternal diabetes contributes to these changes remain to be investigated.  相似文献   
13.
Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum   总被引:1,自引:0,他引:1  
The innate immune system of insects provides effective defence against a range of parasites and pathogens. The pea aphid, Acyrthosiphon pisum, is a novel study system for investigating host-parasite interactions due to its complex associations with both well-characterised bacterial symbionts and a diversity of pathogens and parasites, including several important biological control agents. However, little is known about the cellular and humoral immune responses of aphids. Here we identify three morphologically distinct types of haemocytes in circulation that we name prohemocytes, granulocytes and oenocytoids. Granulocytes avidly phagocytose Gram negative Escherechia coli and Gram positive Micrococcus luteus while oenocytoids exhibit melanotic activity. Prohaemocytes increase in abundance immediately following an immune challenge, irrespective of the source of stimulus. Pea aphids form melanotic capsules around Sephadex beads but do not form cellular capsules. We also did not detect any antimicrobial peptide activity in the haemolymph using zone of inhibition assays. We discuss these results in relation to recent findings from the pea aphid genome annotation project that suggest that aphids have a reduced immune gene repertoire compared to other insects.  相似文献   
14.
Anammox (anaerobic ammonium oxidation) is an environment-friendly and cost-efficient nitrogen-removal process currently applied to high-ammonium-loaded wastewaters such as anaerobic digester effluents. In these wastewaters, dissolved methane is also present and should be removed to prevent greenhouse gas emissions into the environment. Potentially, another recently discovered microbial pathway, n-damo (nitrite-dependent anaerobic methane oxidation) could be used for this purpose. In the present paper, we explore the feasibility of simultaneously removing methane and ammonium anaerobically, starting with granules from a full-scale anammox bioreactor. We describe the development of a co-culture of anammox and n-damo bacteria using a medium containing methane, ammonium and nitrite. The results are discussed in the context of other recent studies on the application of anaerobic methane- and ammonia-oxidizing bacteria for wastewater treatment.  相似文献   
15.
Eighty-five putative Pseudomonas isolates were obtained from various raw milk and pasteurized milk samples using Pseudomonas CFC agar. Among them, 36 isolates were identified as Pseudomonas fluorescens, and one isolate was identified as Pseudomonas putida. Lipase activity of the strains was quantitatively measured by the spectrophotometric method using p-nitrophenyl palmitate (p-NPP) as substrate. Detected lipase activity of the strains was between 10.03 U/mL and 22.16 U/mL. Pseudomonas fluorescens RB02-3 possessed the highest lipase activity. The extracellular lipase of P. fluorescens RB02-3 strain was homogeneously purified using a combination of ammonium sulfate precipitation, dialysis, and gel filtration column chromatography. This purification procedure resulted in 2.97-fold purification with 20.3% recovery. The enzyme was characterized, and exhibited maximum activity at pH 7.0 and 50 °C; after it was incubated for 1 h it was activated in the presence of hexane, ethyl acetate, isopropanol, and ethanol and remained stable after the incubation was extended for 2 hr. The lipase was slightly inhibited in the presence of Zn2+, Co2+, Cu2+, Ni2+ salts, and ethylenediamine tetraacetic acid (EDTA), whereas Cd2+, sodium dodecyl sulfate (SDS), and Tween-80 had no effect on its activity.  相似文献   
16.
Microbiological investigation of anaerobic ammonium oxidizing (anammox) bacteria has until now been restricted to wastewater species. The present study describes the enrichment and characterization of two marine Scalindua species, the anammox genus that dominates almost all natural habitats investigated so far. The species were enriched from a marine sediment in the Gullmar Fjord (Sweden) using a medium based on Red Sea salt. Anammox cells comprised about 90% of the enrichment culture after 10 months. The enriched Scalindua bacteria displayed all typical features known for anammox bacteria, including turnover of hydrazine, the presence of ladderane lipids, and a compartmentalized cellular ultrastructure. The Scalindua species also showed a nitrate-dependent use of formate, acetate and propionate, and performed a formate-dependent reduction of nitrate, Fe(III) and Mn(IV). This versatile metabolism may be the basis for the global distribution and substantial contribution of the marine Scalindua anammox bacteria to the nitrogen loss from oxygen-limited marine ecosystems.  相似文献   
17.
Gill, trunk kidney, spleen, and liver of rainbow trout (Oncorhynchus mykiss) were examined after exposure to different sublethal concentrations of carbosulfan (25, 50 and 200 μg L−1), propineb (3, 6 and 24 mg L−1), and benomyl (2, 5 and 20 mg L−1) for 14 days. Lesions were observed in gill, trunk kidney, spleen, and liver of rainbow trout exposed to either concentration of pesticides. The most important lesions were determined in the highest concentrations of pesticides. Lamellar fusion, lamellar hyperplasia, epithelial lifting, vacuolization of epithelial tissue, epithelial necrosis, hypertrophy and sloughing of epithelium were observed on fish exposed to carbosulfan, propineb and benomyl. Fish had cell necrosis, degeneration and oedemas in liver, trunk kidney and spleen. None of these lesions were seen in control fish.  相似文献   
18.
Essential aspects of the innate immune response to microbial infection are conserved between insects and mammals. This has generated interest in using insects as model organisms to study host-microbe interactions. We used the greater wax moth Galleria mellonella, which can be reared at 37°C, as a model host for examining the virulence potential of Listeria spp. Here we report that Galleria is an excellent surrogate model of listerial septic infection, capable of clearly distinguishing between pathogenic and nonpathogenic Listeria strains and even between virulent and attenuated Listeria monocytogenes strains. Virulence required listerial genes hitherto implicated in the mouse infection model and was linked to strong antimicrobial activities in both hemolymph and hemocytes of infected larvae. Following Listeria infection, the expression of immune defense genes such as those for lysozyme, galiomycin, gallerimycin, and insect metalloproteinase inhibitor (IMPI) was sequentially induced. Preinduction of antimicrobial activity by treatment of larvae with lipopolysaccharide (LPS) significantly improved survival against subsequent L. monocytogenes challenge and strong antilisterial activity was detected in the hemolymph of LPS pretreated larvae. We conclude that the severity of septic infection with L. monocytogenes is modulated primarily by innate immune responses, and we suggest the use of Galleria as a relatively simple, nonmammalian model system that can be used to assess the virulence of strains of Listeria spp. isolated from a wide variety of settings from both the clinic and the environment.Listeriae are rod-shaped, motile, facultative, anaerobic Gram-positive bacteria that are ubiquitously distributed in the environment (28). Of the six species that comprise the genus Listeria, only L. monocytogenes and L. ivanovii are pathogenic and cause disease, while strains of the species L. innocua, L. welshimeri, L. seeligeri, and L. grayi are generally considered to be nonpathogenic (26). L. monocytogenes is a major food-borne pathogen, and listeriosis is an invasive disease that in its severest form can lead to meningitis, meningoencephalitis, septicemia, and abortions (38). Listeriosis occurs primarily in pregnant women, newborn infants, and the elderly as well as in immunocompromised patients, with a mortality rate of about 30% (22, 36). The virulence of L. monocytogenes has been linked to a 9.6-kb pathogenicity island designated vgc (virulence gene cluster) that comprises six genes encoding its major virulence determinants. These are (i) prfA, a master regulator of many known listerial virulence genes; (ii) hly, encoding listeriolysin, a hemolysin required for bacterial escape from the host primary vacuole to the host cytoplasm; (iii) two phospholipase genes denoted plcA and plcB, for facilitating lysis of host cell membranes; (iv) actA, encoding a surface bound protein that directs polymerization of host cell actin and is required for intracellular motility; and (v) mpl, encoding a metalloproteinase which is thought to work together with the plcB product to facilitate cell-to-cell spread (28). Presently, identification and characterization of novel virulence factors rely on assessing mutant bacteria for growth in the organs of infected mice. Nevertheless, the dependence on mouse infection models limits large-scale screening for additional mutants defective in their ability to grow in the host intracellularly or for those required to overcome host innate defenses (33).The possibility of addressing many aspects of mammalian innate immunity in invertebrates has opened a new arena for developing invertebrate models to study human infections. Recently the use of invertebrate models, in particular the fruit fly Drosophila melanogaster, has been introduced for the study of septic listerial infections (37). Listeria mutants attenuated for virulence in a mouse model exhibited lowered virulence in this model. The Drosophila model system has powerful genetic tools available and has thus provided deeper insights into molecular mechanisms of the interactions between Listeria and the insect innate immune system (1, 8-10, 18, 24). However, a recent study has shown that even nonpathogenic L. innocua strains cause lethal infections of Drosophila, limiting it use as a discerning model for the study of virulence potential among pathogenic L. monocytogenes isolates (32).We have a longstanding interest in host-pathogen interactions of the greater wax moth, Galleria mellonella, in particular with entomopathogenic microbes (55). Recently, Galleria has also emerged as a reliable model host to study the pathogenesis of many human pathogens (7, 11, 12, 17, 21, 30, 31, 39-42, 44, 46, 48-51). Among the advantages provided by the Galleria model host (e.g., low rearing costs, convenient injection feasibility, and status as an ethically acceptable animal model), it is of particular importance that Galleria has a growth optimum at 37°C, to which human pathogens are adapted and which is essential for synthesis of many virulence/pathogenicity factors. Significantly, a correlation between the virulence of a pathogen in G. mellonella and that in mammalian models has been established (16, 25).The innate immunity of Galleria is a complex, multicomponent response involving hemolymph coagulation, cellular phagocytosis, and phenol oxidase-based melanization. Importantly, killing of pathogens is achieved similarly to that in mammals, i.e., by enzymes (e.g., lysozymes), reactive oxygen species, and antimicrobial peptides (e.g., defensins). Galleria employs recognition of nonself microbe-associated molecular patterns by germ line-encoded receptors (e.g., Toll and peptidoglycan recognition proteins) (52). Recently, we have found that Galleria also senses pathogens by danger signaling, by detecting either nucleic acids released from damaged cells or peptides resulting from proteolytic cleavage of self proteins by matrix metalloproteinases (3-6).In this work we examined the Galleria model of septic infection for its ability to differentially distinguish between infections caused by strains with different virulence potentials in the mouse infection model, as well as in avirulent strains of Listeria. We found that the Galleria model is highly discriminatory in assessing the pathogenic potential of Listeria spp., and we observed a strong correlation with the virulence previously determined in the mouse model of infection. Here, we present data indicating that the Galleria model also replicates many aspects of innate immune function, such as the constitutive expressions of potential antimicrobial factors following infection. Also, prior induction of immunity in Galleria can protect larvae from septic infection with highly pathogenic L. monocytogenes.  相似文献   
19.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   
20.

Objective

Type 2 diabetes has a long pre clinical asymptomatic phase. Early detection may delay or arrest disease progression. The Diabetes Mellitus and Vascular health initiative (DMVhi) was initiated as a prospective longitudinal cohort study on the prevalence of undiagnosed Type 2 diabetes and prediabetes, diabetes risk and cardiovascular risk in a cohort of Irish adults aged 45-75 years.

Research Design and Methods

Members of the largest Irish private health insurance provider aged 45 to 75 years were invited to participate in the study. Exclusion criteria: already diagnosed with diabetes or taking oral hypoglycaemic agents. Participants completed a detailed medical questionnaire, had weight, height, waist and hip circumference and blood pressure measured. Fasting blood samples were taken for fasting plasma glucose (FPG). Those with FPG in the impaired fasting glucose (IFG) range had a 75gm oral glucose tolerance test performed.

Results

122,531 subjects were invited to participate. 29,144 (24%) completed the study. The prevalence of undiagnosed diabetes was 1.8%, of impaired fasting glucose (IFG) was 7.1% and of impaired glucose tolerance (IGT) was 2.9%. Dysglycaemia increased among those aged 45-54, 55-64 and 65-75 years in both males (10.6%, 18.5%, 21.7% respectively) and females (4.3%, 8.6%, 10.9% respectively). Undiagnosed T2D, IFG and IGT were all associated with gender, age, blood pressure, BMI, abdominal obesity, family history of diabetes and triglyceride levels. Using FPG as initial screening may underestimate the prevalence of T2D in the study population.

Conclusions

This study is the largest screening study for diabetes and prediabetes in the Irish population. Follow up of this cohort will provide data on progression to diabetes and on cardiovascular outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号