首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   5篇
  2012年   14篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1971年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
11.
Similar to ubiquitin, regulatory roles for NEDD8 (neural precursor cell-expressed developmentally down-regulated 8) are being clarified during cell growth, signal transduction, immune response, and development. However, NEDD8 targets and their functional alterations are not well known. Regulator of calcineurin 1 (RCAN1/DSCR1P1) is located near the Down syndrome critical region on the distal part of chromosome 21, and its gene product is an endogenous inhibitor of calcineurin signaling. RCAN1 is modified by ubiquitin and consequently undergoes proteasomal degradation. Here we report that NEDD8 is conjugated to RCAN1 (RCAN1-1S) via three lysine residues, K96, K104, and K107. Neddylation enhances RCAN1 protein stability without affecting its cellular location. In addition, we found that neddylation significantly inhibits proteasomal degradation of RCAN1, which may underlie the ability of NEDD8 to enhance RCAN1 stability. Furthermore, neddylation increases RCAN1 binding to calcineurin, which potentiates its inhibitory activity toward downstream NFAT signaling. The present study provides a new regulatory mechanism of RCAN1 function and highlights an important role for diverse RCAN1-involved cellular physiology.  相似文献   
12.
Double-stranded RNA (dsRNA) induces gene silencing in a sequence-specific manner by a process known as RNA interference (RNAi). The RNA-induced silencing complex (RISC) is a multi-subunit ribonucleoprotein complex that plays a key role in RNAi. VIG (Vasa intronic gene) has been identified as a component of Drosophila RISC; however, the role VIG plays in regulating RNAi is poorly understood. Here, we examined the spatial and temporal expression patterns of VIG-1, the C. elegans ortholog of Drosophila VIG, using a vig-1::gfp fusion construct. This construct contains the 908-bp region immediately upstream of vig-1 gene translation initiation site. Analysis by confocal microscopy demonstrated GFP-VIG-1 expression in a number of tissues including the pharynx, body wall muscle, hypodermis, intestine, reproductive system, and nervous system at the larval and adult stages. Furthermore, western blot analysis showed that VIG-1 is present in each developmental stage examined. To investigate regulatory sequences for vig-1 gene expression, we generated constructs containing deletions in the upstream region. It was determined that the GFP expression pattern of a deletion construct (delta-908 to -597) was generally similar to that of the non-deletion construct. In contrast, removal of a larger segment (delta-908 to -191) resulted in the loss of GFP expression in most cell types. Collectively, these results indicate that the 406-bp upstream region (-596 to -191) contains essential regulatory sequences required for VIG-1 expression.  相似文献   
13.
14.

Background

Myelin oligodendrocyte glycoprotein immunoglobulin G1 (MOG-IgG1)-associated disease is suggested as a separate disease entity distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Nonetheless, the optimal treatment regimen for preventing relapses in MOG-IgG1-associated disease remains unclear.

Case presentation

We describe the case of a 45-year-old man with MOG-IgG1-positive highly relapsing optic neuritis who had experienced 5 attacks over 21?months and had monocular blindness despite prednisolone and azathioprine therapy. He began treatment with rituximab, which reduced the rate of relapse markedly. Following discontinuation of rituximab, however, the patient experienced two successive optic neuritis attacks 2 and 4?months after B-lymphocyte restoration.

Conclusions

Highly relapsing MOG-IgG1-associated disease can be prevented with rituximab even when the MOG-IgG1 titers are relatively stationary. Discontinuation of rituximab and restoration of B-lymphocytes may be associated with the rebound of disease activity.
  相似文献   
15.
16.
Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement.  相似文献   
17.
Streptococcus mutans is one of the more significant pathogens involved in the development of dental caries in humans. The purpose of this research was to design a TiO2-coated dental instrument and to determine the bactericidal effects of the instrument onS. mutants. TiO2 photocatalytic films were prepared by the low-pressure metal-organic chemical vapor deposition (LPMOCVD) method using titanium tetraisopropoxide (TTIP) as precursor. The photocatalytic reaction was carried out on a TiO2-coated pyrex petri dish with an ultraviolet (UV) light emitting diode (LED) illuminator or a fluorescent lamp light source. Our data indicates that the relative survival ratio ofS. mutans when plated onto TiO2 photocatalytic films and under exposure to UV-A light for 15 min was 0.01%. In addition, a fluorescent lamp light source also had bactericidal effects on theS. mutans plated TiO2 photocatalytic films. These results indicate that TiO2-coated dental materials or devices may be useful in dental treatments for the prevention of carious or enamel demineralization.  相似文献   
18.
Recent genetic screens of fly mutants and molecular analysis have revealed that the Hippo (Hpo) pathway controls both cell proliferation and cell death. Deregulation of its human counterpart (the MST pathway) has been implicated in human cancers. However, how this pathway is linked with the known tumor suppressor network remains to be established. RUNX3 functions as a tumor suppressor of gastric cancer, lung cancer, bladder cancer, and colon cancer. Here, we show that RUNX3 is a principal and evolutionarily conserved component of the MST pathway. SAV1/WW45 facilitates the close association between MST2 and RUNX3. MST2, in turn, stimulates the SAV1-RUNX3 interaction. In addition, we show that siRNA-mediated RUNX3 knockdown abolishes MST/Hpo-mediated cell death. By establishing that RUNX3 is an endpoint effector of the MST pathway and that RUNX3 is capable of inducing cell death in cooperation with MST and SAV1, we define an evolutionarily conserved novel regulatory mechanism loop for tumor suppression in human cancers.  相似文献   
19.
Many membrane-bound neurotransmitter receptors are known to be internalized by exposure to agonist. This agonist-induced receptor internalization is considered to play important roles in receptor-mediated signaling. Here we investigated the internalization of GAR-3, a Caenorhabditis elegans muscarinic acetylcholine receptor, using cultured mammalian cells. When Chinese hamster ovary cells stably expressing GAR-3 were treated with carbachol, GAR-3 was internalized in a dose- and time-dependent manner. Approximately 60% of the cell surface receptor was internalized by exposure to 1 mM carbachol for 1 h. Carbachol-induced GAR-3 internalization was suppressed by treatment with hypertonic sucrose, which blocks the formation of clathrin-coated pits. Overexpression of a dominant-negative dynamin mutant (DynK44A), but not of a dominant-negative β-arrestin mutant (Arr319–418), substantially inhibited carbachol-induced internalization of GAR-3. Thus, these data suggest that GAR-3 undergoes agonist-induced internalization via a clathrin- and dynamin-dependent but β-arrestin-independent pathway. Depletion of Ca2+ by simultaneous treatment of the cells with BAPTA/AM (Ca2+ mobilization blocker) and EGTA (Ca2+ influx blocker) almost completely blocked agonist-induced GAR-3 internalization. Moreover, treatment of the cells with the Ca2+ ionophore A23187 led to GAR-3 internalization in the absence of agonist. These results indicate that Ca2+ plays a critical role in GAR-3 internalization. We tested whether the third intracellular (i3) loop of GAR-3 is involved in agonist-stimulated receptor internalization. A GAR-3 deletion mutant lacking a large central portion of the i3 loop exhibited an internalization pattern comparable to that of the wild type, suggesting that the central i3 loop is not required for the internalization of GAR-3.  相似文献   
20.
The 26 S proteasome, composed of the 20 S core and 19 S regulatory particle, plays a central role in ubiquitin-dependent proteolysis. Disruption of this process contributes to the pathogenesis of the various diseases; however, the mechanisms underlying the regulation of 26 S proteasome activity remain elusive. Here, cell culture experiments and in vitro assays demonstrated that apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase family, negatively regulated 26 S proteasome activity. Immunoprecipitation/Western blot analyses revealed that ASK1 did not interact with 20 S catalytic core but did interact with ATPases making up the 19 S particle, which is responsible for recognizing polyubiquitinated proteins, unfolding them, and translocating them into the 20 S catalytic core in an ATP-dependent process. Importantly, ASK1 phosphorylated Rpt5, an AAA ATPase of the 19 S proteasome, and inhibited its ATPase activity, an effect that may underlie the ability of ASK1 to inhibit 26 S proteasome activity. The current findings point to a novel role for ASK1 in the regulation of 26 S proteasome and offer new strategies for treating human diseases caused by proteasome malfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号