首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4165篇
  免费   385篇
  国内免费   3篇
  4553篇
  2023年   34篇
  2022年   62篇
  2021年   132篇
  2020年   81篇
  2019年   94篇
  2018年   116篇
  2017年   108篇
  2016年   171篇
  2015年   312篇
  2014年   279篇
  2013年   279篇
  2012年   452篇
  2011年   361篇
  2010年   233篇
  2009年   189篇
  2008年   268篇
  2007年   241篇
  2006年   198篇
  2005年   191篇
  2004年   134篇
  2003年   131篇
  2002年   112篇
  2001年   19篇
  2000年   18篇
  1999年   14篇
  1998年   27篇
  1997年   10篇
  1996年   10篇
  1995年   13篇
  1994年   11篇
  1993年   13篇
  1992年   17篇
  1991年   16篇
  1990年   11篇
  1988年   16篇
  1987年   7篇
  1986年   10篇
  1985年   8篇
  1984年   14篇
  1983年   10篇
  1981年   11篇
  1980年   7篇
  1979年   10篇
  1978年   9篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1972年   6篇
  1971年   6篇
  1969年   6篇
排序方式: 共有4553条查询结果,搜索用时 15 毫秒
21.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
22.
23.
Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.  相似文献   
24.
Non‐native animals can encounter very different environments than those they are adapted to. Functional changes in morphology, physiology and life‐history following introduction show that organisms can adapt both fast and efficiently. It remains unclear, however, if female reproductive characters and male sexually selected behaviour show the same adaptive potential. Furthermore, the invasion success and evolutionary trajectory of non‐native species might often depend on the ability of the sexes to coordinate shifts in characters associated with reproductive strategy. The common wall lizard, Podarcis muralis, has been repeatedly introduced from southern Europe to England over the past 80 years. Lizards in England experience a cool, seasonal climate that effectively restricts recruitment to the first clutch of the season, whereas in their native range up to three clutches per season recruit. As a consequence, both females and males in non‐native populations should benefit from reducing or even eliminating their reproductive investment in second clutches. Using a combination of field data and experiments, we show that non‐native females produce relatively larger and heavier first seasonal clutches and smaller and lighter second seasonal clutches compared to native females. In contrast, non‐native and native males do not differ in their territorial and sexual behaviour later in the season. An adaptive shift in male seasonal reproductive investment may be constrained because males use breeding females as cues for sexual behaviour. If this is so, we expect a general pattern across climatic regimes whereby female reproductive investment evolves first, with responses in males lagging behind.  相似文献   
25.
Vocal production in songbirds requires the control of the respiratory system, the syrinx as sound source and the vocal tract as acoustic filter. Vocal tract movements consist of beak, tongue and hyoid movements, which change the volume of the oropharyngeal–esophageal cavity (OEC), glottal movements and tracheal length changes. The respective contributions of each movement to filter properties are not completely understood, but the effects of this filtering are thought to be very important for acoustic communication in birds. One of the most striking movements of the upper vocal tract during vocal behavior in songbirds involves the OEC. This study measured the acoustic effect of OEC adjustments in zebra finches by comparing resonance acoustics between an utterance with OEC expansion (calls) and a similar utterance without OEC expansion (respiratory sounds induced by a bilateral syringeal denervation). X-ray cineradiography confirmed the presence of an OEC motor pattern during song and call production, and a custom-built Hall-effect collar system confirmed that OEC expansion movements were not present during respiratory sounds. The spectral emphasis during zebra finch call production ranging between 2.5 and 5 kHz was not present during respiratory sounds, indicating strongly that it can be attributed to the OEC expansion.  相似文献   
26.
Ca(2+) signals regulate polarization, speed, and turning of migrating cells. However, the molecular mechanism by which Ca(2+) acts on moving cells is not understood. Here we show that local Ca(2+) pulses along the front of migrating human endothelial cells trigger cycles of retraction of local lamellipodia and, concomitantly, strengthen local adhesion to the extracellular matrix. These Ca(2+) release pulses had small amplitudes and diameters and were triggered repetitively near the leading plasma membrane with only little coordination between different regions. We show that each Ca(2+) pulse triggers contraction of actin filaments by activating myosin light-chain kinase and myosin II behind the leading edge. The cyclic force generated by myosin II operates locally, causing a partial retraction of the nearby protruding lamellipodia membrane and a strengthening of paxillin-based focal adhesion within the same lamellipodia. Photo release of Ca(2+) demonstrated a direct role of Ca(2+) in triggering local retraction and adhesion. Together, our study suggests that spatial sensing, forward movement, turning, and chemotaxis are in part controlled by confined Ca(2+) pulses that promote local lamellipodia retraction and adhesion cycles along the leading edge of moving cells.  相似文献   
27.
The pant hoot calls produced by common chimpanzees (Pan troglodytes) are multi-call vocalizations that have figured prominently in investigations of acoustic communication in this species. Although pant hoots are predominantly harmonically structured, they can exhibit an acoustic complexity that has recently been linked to nonlinearity in the vocal-fold dynamics underlying typical mammalian sound production. We examined the occurrence of these sorts of nonlinear phenomena in pant hoot vocalizations, contrasting quieter and lower-pitched "introduction" components with loud and high-pitched "climax" calls in the same bouts. Spectrographic evidence revealed four kinds of nonlinear phenomena, including discrete frequency jumps, subharmonics, biphonation, and deterministic chaos. While these events were virtually never observed during the introduction, they occurred in more than half of the climax calls. Biphonation was by far the most common phenomenon, followed by subharmonics, chaos, and frequency jumps. Individual callers varied in the degree to which their climax calls exhibited nonlinear phenomena, but were consistent in showing more biphonation than other forms. These outcomes show that nonlinear phenomena are routinely present in chimpanzee pant hoots, and help lay the foundation for investigating the function of such events.  相似文献   
28.
29.

Objective

Aim of this study was to evaluate a new histidine-tryptophan-ketoglutarate (HTK)-based preservation solution on chronic isograft injury in comparison to traditional HTK solution.

Methods

Hearts of C57BL/6J (H-2b) mice were stored for 15 h in 0–4 °C cold preservation solution and then transplanted heterotopically into C57BL/6J (H-2b) mice. Three groups were evaluated: HTK, the base solution of a new preservation solution and hearts without cold ischemia (control). Time to restoration of heartbeat was measured (re-beating time). Strength of the heartbeat was palpated daily and scored on a 4-level scale (palpation score). Animals were sacrificed after 60 days of observation (24 h for TGF-β expression). The transplanted hearts were evaluated histologically for myocardial damage, vasculopathy and interstitial fibrosis. TGF-β expression was assessed immunohistologically. All investigators were blinded to the groups. ANOVA and LSD post hoc test were used for statistical analysis.

Results

The re-beating time was significantly shorter in hearts stored in the new solution (10.3 ± 2.6 min vs. HTK 14.2 ± 4.1 min; p < 0.05). The palpation score was significantly higher in hearts stored in the new solution (2.3 ± 0.4 vs. HTK 1.6 ± 0.5; p < 0.01). Hearts stored in the new solution showed a lower myocardial injury score (1.8 ± 0.2 vs. HTK 2.2 ± 0.7), less interstitial fibrosis (4.8 ± 1.9% vs. HTK 8.5 ± 3.8%, p < 0.05), less vasculopathy (14.7 ± 6.9% vs. 22.0 ± 23.2%; p = 0.06) and lower TGF-β1-expression (6.6 ± 1.4% vs. HTK 12.0 ± 4.6%).

Conclusion

The new HTK-based solution reduces the chronic isograft injury. This protective effect is likely achieved through several modifications and supplements into the new solution like N-acetyl-l-histidine, glycine, alanine, arginine and sucrose.  相似文献   
30.
New studies have been made on endocranial casts of Olduvai specimens of Homo habilis. The results have been compared with those on other East African H. habilis and other hominoids. The mean absolute endocranial capacity of H. habilis is appreciably larger than the mean for australopithecine species: on the new estimates, the H. habilis mean is 45·1% greater than the A. africanus mean and 24·8% greater than that of A. boisei. New data for relative brain size, expressed by Jerison's Nc and EQ and Hemmer's CC, strongly confirm that it was with H. habilis that there appeared the remarkable autapomorphy of Homo, disproportionate expansion of the brain. Encephalometric studies reveal marked transverse expansion of the cerebrum, especially the frontal and parieto-occipital parts, in H. habilis and increased bulk of the frontal and parietal lobes, a derived feature of Homo. There is moderate cerebral heightening, but little or no cerebral lengthening. The sulcal and gyral pattern of the lateral part of the frontal lobe of H. habilis differs from those of Australopithecus and resembles the derived pattern of Homo. The inferior parietal lobule is prominently developed—an autapomorphy of Homo. The two major cerebral areas governing spoken language in modern man are well represented in the endocasts of H. habilis, a functionally important autapomorphy of Homo. The pattern of middle meningeal vessels is more complex with more anastomoses than in australopithecines: H. habilis shares this derived feature with later forms of Homo. In all these features, the brain of H. habilis had made major advances, beyond the more ape-like australopithecine brain. With H. habilis, cerebral evolution had progressed beyond the stage of “animal hominids” (Australopithecus spp.) to that of “human hominids” (Homo spp.). In functional capacity, in particular, its possession of a structural marker of the neurological basis of spoken language, H. habilis had attained a new evolutionary level of organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号