首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  17篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有17条查询结果,搜索用时 0 毫秒
11.
Temperature and pH play an important role in the stability of phycocyanin, a natural blue colorant. Systematic investigations showed the maximum stability of phycocyanin was in the pH range 5.5–6.0. Incubation at temperatures between 47 and 64 °C caused the concentration (CR) and half-life of phycocyanin in solution to decrease rapidly. The CR value remained at approximately 50% after incubating for 30 min at 59 °C. After heating at 60 °C for 15 min, the CR value of phycocyanin at pH 7.0 was maintained at around 62–70% when 20–40% glucose or sucrose was added, and the half-life increased from 19 min to 30–44 min. 2.5% sodium chloride was found to be an effective preservative for phycocyanin at pH 7.0 as a CR value of 76% was maintained and the half-life of 67 min was increased.  相似文献   
12.
Information about airborne fungal spore is crucial for health risk assessment and management, especially for patients with allergy and asthma. Nonetheless, such data are rarely available from certain areas of the world, including Southeast Asia. The aim of this study was to gain updated information about airborne fungal spore in Bangkok, the capital city of Thailand. A survey was conducted at five sampling sites in Bangkok, using the Rotorod Sampler® for a period of 1 year. High concentrations of spores were found all year with the peak between August and November. The most prominent spore types were Cladosporium, Nigrospora, Puccinia, Aspergillus/Penicillium, and Fusarium. The spore concentrations were positively and significantly correlated with the amount of rainfall and relative humidity, reaching the maximum level in September. Sensitization rates to Cladosporium, Penicillium, and Aspergillus among Thai atopic patients were approximately 16.6, 13.6, and 13.0%, respectively.  相似文献   
13.
The highest purity ratio of phycocyanin extract was obtained when fresh biomass was used as raw material. The crude extract was purified by membrane process using microfiltration and ultrafiltration. Membrane of pore sizes 5 μm, at feed flow rate of 150 mL min−1, permeate flux of 58.5 L h−1 m−2 was selected for coarse filtration and membrane with pore size 0.8/0.2 μm at the flow rate of 100 mL min−1, permeate flux of 336 L h−1 m−2 was selected for fine filtration, giving phycocyanin recovery of 88.6% and 82.9%, respectively. For ultrafiltration, membrane with MWCO at 50 kDa, 69 kPa and 75 mL min−1 of flow rate with a mean permeate flux 26.8 L h−1 m−2 and a retention rate of 99% was found to be optimal. Under these filtration conditions, food grade phycocyanin with the purity around 1.0 containing c-phycocyanin as the major component was obtained.  相似文献   
14.
Three isolates ofSpirulina platensis (Norst) Geitler marked BP, P4P and Z19/2 were compared with respect to their response and acclimation capability to high photon flux densities (HPFD). Cultures exposed to HPFD (1500–3500 mol photon m–2 s–1) exhibited a marked decrease in light-dependent O2 evolution rate. P4P was more sensitive to HPFD than the two other isolates. All three isolates recovered from photoinhibition when placed under low PFD. The BP isolate was able to recover also in the dark but to a lower extent and at a lower rate, while no recovery was observed in the other two isolates under dark conditions. No recovery was observed when protein synthesis was inhibited using chloramphenicol. Cultures grown at 200 mol photon m–2 s–1 differed from cultures grown at 120 mol photon m 2 s-1 by their lower maximal photosynthetic rate (P max ) and higher light saturation (I k ) value, while being more resistant to HPFD stress. The ability ofSpirulina isolates to acclimate and withstand HPFD may provide useful information for the selection of strains useful for outdoor mass cultivation.Author for correspondence  相似文献   
15.
16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号