首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   85篇
  481篇
  2022年   5篇
  2021年   5篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   19篇
  2013年   26篇
  2012年   20篇
  2011年   16篇
  2010年   10篇
  2009年   17篇
  2008年   19篇
  2007年   15篇
  2006年   20篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   8篇
  2001年   15篇
  2000年   18篇
  1999年   10篇
  1998年   20篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1989年   11篇
  1988年   14篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有481条查询结果,搜索用时 9 毫秒
61.

Background  

Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction.  相似文献   
62.
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.  相似文献   
63.
64.
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.  相似文献   
65.
The membrane-bound protein EIICB(Glc) encoded by the ptsG gene is the major glucose transporter in Escherichia coli. This protein is part of the phosphoenolpyruvate:glucose-phosphotransferase system, a very important transport and signal transduction system in bacteria. The regulation of ptsG expression is very complex. Among others, two major regulators, the repressor Mlc and the cyclic AMP-cyclic AMP receptor protein activator complex, have been identified. Here we report identification of a novel protein, YeeI, that is involved in the regulation of ptsG by interacting with Mlc. Mutants with reduced activity of the glucose-phosphotransferase system were isolated by transposon mutagenesis. One class of mutations was located in the open reading frame yeeI at 44.1 min on the E. coli K-12 chromosome. The yeeI mutants exhibited increased generation times during growth on glucose, reduced transport of methyl-alpha-d-glucopyranoside, a substrate of EIICB(Glc), reduced induction of a ptsG-lacZ operon fusion, and reduced catabolite repression in lactose/glucose diauxic growth experiments. These observations were the result of decreased ptsG expression and a decrease in the amount of EIICB(Glc). In contrast, overexpression of yeeI resulted in higher expression of ptsG, of a ptsG-lacZ operon fusion, and of the autoregulated dgsA gene. The effect of a yeeI mutation could be suppressed by introducing a dgsA deletion, implying that the two proteins belong to the same signal transduction pathway and that Mlc is epistatic to YeeI. By measuring the surface plasmon resonance, we found that YeeI (proposed gene designation, mtfA) directly interacts with Mlc with high affinity.  相似文献   
66.
Measuring body lipids and proteins of wild animals such as mallards is essential to determine the impact of the environment on their body condition. A major difficulty, however, is that biochemical analysis of carcass is tedious and therefore cannot be applied at a large scale. The main objective of this study was therefore to find out if simple measurements can be used as indices of total body lipids and proteins. Four classes of lipid and protein indices, derived on a 'source' group, were defined according to their complexity and condition of application (field or laboratory). Accuracy of the indices was evaluated on an independent group, of which the body composition calculated from indices was compared to carcass analysis. In live birds, body mass was an accurate and convenient predictor for both lipid and protein masses. If carcasses are available, extensive analysis provides a higher accuracy for body lipids only. This can be simply obtained through multiple regressions using abdominal fat mass and/or dry body mass.  相似文献   
67.
The precise duplication of the eukaryotic genome is accomplished by carefully coordinating the loading and activation of the replicative DNA helicase so that each replication origin is unwound and assembles functional bi-directional replisomes just once in each cell cycle. The essential Minichromosome Maintenance 2-7 (Mcm2-7) proteins, comprising the core of the replicative DNA helicase, are first loaded at replication origins in an inactive form. The helicase is then activated by recruitment of the Cdc45 and GINS proteins into a holo-helicase known as CMG (Cdc45, Mcm2-7, GINS). These steps are regulated by multiple mechanisms to ensure that Mcm2-7 loading can only occur during G1 phase, whilst activation of Mcm2-7 cannot occur during G1 phase. Here we review recent progress in understanding these critical reactions focusing on the mechanism of helicase loading and activation.  相似文献   
68.
Sister chromatids are held together by the ring-shaped cohesin complex, which likely entraps both DNA-double strands in its middle. This tie is resolved in anaphase when separase, a giant protease, becomes active and cleaves the kleisin subunit of cohesin. Premature activation of separase and, hence, chromosome missegregation are prevented by at least two inhibitory mechanisms. Although securin has long been appreciated as a direct inhibitor of separase, surprisingly its loss has basically no phenotype in mammals. Phosphorylation-dependent binding of Cdk1 constitutes an alternative way to inhibit vertebrate separase. Its importance is illustrated by the premature loss of cohesion when Cdk1-resistant separase is expressed in mammalian cells without or with limiting amounts of securin. Here, we demonstrate that crucial inhibitory phosphorylations occur within a region of human separase that is also shown to make direct contact with the cyclin B1 subunit of Cdk1. This region exhibits a weak homology to Saccharomyces cerevisiae Cdc6 of similar Cdk1 binding behavior, thereby establishing phosphoserine/threonine-mediated binding of partners as a conserved characteristic of B-type cyclins. In contrast to the Cdc6-like domain, the previously identified serine 1126 phosphorylation is fully dispensable for Cdk1 binding to separase fragments. This suggests that despite its in vivo relevance, it promotes complex formation indirectly, possibly by inducing a conformational change in full-length separase.  相似文献   
69.
Maltose-binding protein (MBP) is essential for maltose transport and chemotaxis in Escherichia coli. To perform these functions it must interact with two sets of cytoplasmic membrane proteins, the MalFGK transport complex and the chemotactic signal transducer Tar. MBP is present at high concentrations, on the order of 1 mM, in the periplasm of maltose-induced or malTc constitutive cells. To determine how the amount of MBP affects transport and taxis, we utilized a series of malE signal-sequence mutations that interfere with export of MBP. The MBP content in shock fluid from cells carrying the various mutations ranged from 4 to 23% of the malE+ level. The apparent Km for maltose transport varied by less than a factor of 2 among malE+ and mutant strains. At a saturating maltose concentration 9% (approximately 90 microM) of the malE+ amount of MBP was required for half-maximal uptake rates. Transport exhibited a sigmoidal dependence on the amount of periplasmic MBP, indicating that MBP may be involved in a cooperative interaction at some stage of the transport process. The chemotactic response to a saturating maltose stimulus exhibited a first-order dependence on the amount of periplasmic MBP. Thus, interaction of a single substrate-bound MBP with Tar appears sufficient to initiate a chemotactic signal from the transducer. A half-maximal chemotactic response occurred at 25% of the malE+ MBP level, suggesting that in vivo the KD for binding of maltose-loaded MBP to Tar is quite high (approximately 250 microM).  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号