首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   71篇
  国内免费   1篇
  2022年   6篇
  2021年   17篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   9篇
  2016年   24篇
  2015年   45篇
  2014年   45篇
  2013年   51篇
  2012年   74篇
  2011年   95篇
  2010年   32篇
  2009年   34篇
  2008年   40篇
  2007年   44篇
  2006年   50篇
  2005年   49篇
  2004年   30篇
  2003年   34篇
  2002年   28篇
  2001年   20篇
  2000年   22篇
  1999年   21篇
  1998年   4篇
  1997年   9篇
  1996年   8篇
  1995年   10篇
  1994年   4篇
  1993年   6篇
  1992年   14篇
  1991年   17篇
  1990年   23篇
  1989年   6篇
  1988年   17篇
  1987年   11篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   7篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1966年   2篇
  1935年   2篇
排序方式: 共有996条查询结果,搜索用时 225 毫秒
141.
MAGE genes are expressed by many human tumors of different histological types but not by normal cells, except for male germline cells. The Ags encoded by MAGE genes and recognized by T cells are therefore strictly tumor-specific. Clinical trials involving therapeutic vaccination of cancer patients with MAGE antigenic peptides or proteins are in progress. To increase the range of patients eligible for therapy with peptides, it is important to identify additional MAGE epitopes recognized by CTL. Candidate peptides known to bind to a given HLA have been used to stimulate T lymphocytes in vitro. In some instances, CTL clones directed against these synthetic peptides have been obtained, but these clones often failed to recognize tumor cells expressing the relevant gene. Therefore, we designed a method to identify CTL epitopes that selects naturally processed peptides. Monocyte-derived dendritic cells infected with a recombinant canarypoxvirus (ALVAC) containing the entire MAGE-A1 gene were used to stimulate CD8+ T lymphocytes from the blood of individuals without cancer. Responder cell microcultures that specifically lysed autologous cells expressing MAGE-A1 were cloned using autologous stimulator cells either transduced with a retrovirus coding for MAGE-A1 or infected with recombinant Yersinia-MAGE-A1 bacteria. The CTL clones were tested for their ability to lyse autologous cells loaded with each of a set of overlapping MAGE-A1 peptides. This strategy led to the identification of five new MAGE-A1 epitopes recognized by CTL clones on HLA-A3, -A28, -B53, -Cw2, and -Cw3 molecules. All of these CTL clones recognized target cells expressing gene MAGE-A1.  相似文献   
142.
143.
A comparative evaluation of five different cell-disruption methods for the release of recombinant hepatitis B core antigen (HBcAg) from Escherichia coli was investigated. The cell disruption techniques evaluated in this study were high-pressure homogenization, batch-mode bead milling, continuous-recycling bead milling, ultrasonication, and enzymatic lysis. Continuous-recycling bead milling was found to be the most effective method in terms of operating cost and time. However, the highest degree of cell disruption and amounts of HBcAg were obtained from the high-pressure homogenization process. The direct purification of HBcAg from the unclarified cell disruptate derived from high-pressure homogenization and bead milling techniques, using batch anion-exchange adsorption methods, showed that the conditions of cell disruption have a substantial effect on subsequent protein recovery steps.  相似文献   
144.
Immortalized cell lines and live animal models are commonly used for cytotoxicity screening of biomedical devices and materials. However, these assays poorly reflect human physiology and have numerous other disadvantages. An alternative may be to utilize differentiated fibroblastic progenies of human embryonic stem cells (hESC) for in vitro toxicology screening. These were generated through random spontaneous differentiation within standard culture media, over several passages. The cytotoxic response of the differentiated hESC fibroblastic progenies (pH9) to mitomycin C was observed to be not only very similar to the L929 cell line, but was, in fact, more sensitive. At an initial seeding density of 1000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 19.0% from 1.638 to 1.326 for the L929 cell line, as the dosage of mitomycin C was gradually increased from 0 to 1.54 microg/mL. By contrast, pH9 displayed a corresponding 40.5% drop in proliferation index from 3.713 to 2.209. At a higher seeding density of 2000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 27.0% from 1.213 to 0.885 for the L929 cell line, whereas pH9 displayed a corresponding 43.7% drop in proliferation index from 3.711 to 2.091. Hence, it is apparent that pH9 exhibited a more sensitive dose-response to mitomycin C compared to L929, which could be advantageous for cytotoxicity screening assays. Additionally, this study also demonstrated that a highly purified and well-defined phenotypic population of differentiated hESC progenies is not necessary for high reproducibility and accuracy in cytotoxic response.  相似文献   
145.
There is a growing demand for silver-based biocides, including both ionic silver forms and metallic nanosilver. The use of metallic nanosilver, typically chemically produced, faces challenges including particle agglomeration, high costs, and upscaling difficulties . Additionally, there exists a need for the development of a more eco-friendly production of nanosilver. In this study, Gram-positive and Gram-negative bacteria were utilized in the non-enzymatic production of silver nanoparticles via the interaction of silver ions and organic compounds present on the bacterial cell. Only lactic acid bacteria, Lactobacillus spp., Pediococcus pentosaceus, Enterococcus faecium, and Lactococcus garvieae, were able to reduce silver. The nanoparticles of the five best producing Lactobacillus spp. were examined more into detail with transmission electron microscopy. Particle localization inside the cell, the mean particle size, and size distribution were species dependent, with Lactobacillus fermentum having the smallest mean particle size of 11.2 nm, the most narrow size distribution, and most nanoparticles associated with the outside of the cells. Furthermore, influence of pH on the reduction process was investigated. With increasing pH, silver recovery increased as well as the reduction rate as indicated by UV–VIS analyses. This study demonstrated that Lactobacillus spp. can be used for a rapid and efficient production of silver nanoparticles.  相似文献   
146.
An automated vision system, TeratomEye, was developed for the identification of three representative tissue types: muscle, gut and neural epithelia which are commonly found in teratomas formed from human embryonic stem cells. Muscle tissue, a common structure was identified with an accuracy of 90.3% with high specificity and sensitivity greater than 90%. Gut epithelia were identified with an accuracy of 87.5% with specificity and sensitivity greater than 80%. Neural epithelia which were the most difficult structures to distinguish gave an accuracy of 47.6%. TeratomEye is therefore useful for the automated identification of differentiated tissues in teratoma sections.  相似文献   
147.
Purple acid phosphatases (PAP) are a group of dimetallic phosphohydrolase first identified in eukaryotes. Bioinformatics analysis revealed 57 prokaryotic PAP-like sequences in the genomes of 43 bacteria and 4 cyanobacteria species. A putative PAP gene (BcPAP) from the bacteria Burkholderia cenocepacia J2315 was chosen for further studies. Synteny analysis showed that this gene is present as an independent gene in most of the members of the genus Burkholderia. The predicted 561 a.a. polypeptide of BcPAP was found to harbour all the conserved motifs of the eukaryotic PAPs and an N-terminal twin-arginine translocation signal. Expression and biochemical characterization of BcPAP in Escherichia coli revealed that this enzyme has a relatively narrow substrate spectrum, preferably towards phosphotyrosine, phosphoserine and phosphoenolpyruvate. Interestingly, this enzyme was found to have a pH optimum at 8.5, rather than an acidic optima exhibited by eukaryotic PAPs. BcPAP contains a dimetallic ion centre composed of Fe and Zn, and site-directed mutagenesis confirmed that BcPAP utilizes the invariant residues for metal-ligation and catalysis. The enzyme is secreted by the wild type bacteria and its expression is regulated by the availability of orthophosphate. Our findings suggest that not all members in the PAP family have acidic pH optimum and broad substrate specificity.  相似文献   
148.
Because of the risk of antibiotic resistance development, there is a growing awareness that antibiotics should be used more carefully in animal production. However, a decreased use of antibiotics could result in a higher frequency of pathogenic bacteria, which in its turn could lead to a higher incidence of infections. Short-chain fatty acids (SCFAs) have long been known to exhibit bacteriostatic activity. These compounds also specifically downregulate virulence factor expression and positively influence the gastrointestinal health of the host. As a consequence, there is currently considerable interest in SCFAs as biocontrol agents in animal production. Polyhydroxyalkanoates (PHAs) are polymers of β-hydroxy short-chain fatty acids. Currently, PHAs are applied as replacements for synthetic polymers. These biopolymers can be depolymerised by many different microorganisms that produce extracellular PHA depolymerases. Interestingly, different studies provided some evidence that PHAs can also be degraded upon passage through the gastrointestinal tract of animals and consequently, adding these compounds to the feed might result in biocontrol effects similar to those described for SCFAs.  相似文献   
149.
Despite the prevalence of H5N1 influenza viruses in global avian populations, comparatively few cases have been diagnosed in humans. Although viral factors almost certainly play a role in limiting human infection and disease, host genetics most likely contribute substantially. To model host factors in the context of influenza virus infection, we determined the lethal dose of a highly pathogenic H5N1 virus (A/Hong Kong/213/03) in C57BL/6J and DBA/2J mice and identified genetic elements associated with survival after infection. The lethal dose in these hosts varied by 4 logs and was associated with differences in replication kinetics and increased production of proinflammatory cytokines CCL2 and tumor necrosis factor alpha in susceptible DBA/2J mice. Gene mapping with recombinant inbred BXD strains revealed five loci or Qivr (quantitative trait loci for influenza virus resistance) located on chromosomes 2, 7, 11, 15, and 17 associated with resistance to H5N1 virus. In conjunction with gene expression profiling, we identified a number of candidate susceptibility genes. One of the validated genes, the hemolytic complement gene, affected virus titer 7 days after infection. We conclude that H5N1 influenza virus-induced pathology is affected by a complex and multigenic host component.The last 10 years have witnessed a spread of highly pathogenic H5N1 avian influenza A virus from Southeast Asia into Europe and Africa, killing millions of chickens and ducks. Mammalian species including tigers, cats, dogs, and humans have also been infected with H5N1 virus, causing severe and often fatal disease. Excess mortality in humans was associated with high pharyngeal viral loads and increased cytokine and chemokine production (12). Some evidence suggests that genetic variation among infected hosts contributes to H5N1 infection and pathogenesis. Compared to the many millions of chickens and ducks that have been infected by H5N1 virus, relatively few humans have been infected. Were these individuals genetically predisposed, and therefore, did they have a greater risk of getting infected by the currently circulating H5N1 influenza viruses? Also, among the identified clusters of human H5N1 virus infections, more than 90% of the cases have occurred in genetically related family members, suggesting a possible genetic susceptibility to infection or severe disease (33). Recently, genetic relatedness was shown to be a significant risk factor for severe disease resulting from H3N2 influenza virus infection (2). However, other recent studies either have been unable to confirm the effect of genetic variation on the outcome and severity of influenza A virus infection (19) or have challenged the role of host genetics in H5N1 virus clusters (36).Genetic polymorphisms in the infected host affect microbial pathogenesis. In some host-pathogen studies, individual genes strongly regulated disease susceptibility or severity. For example, a 32-amino-acid deletion in the CCR5 product has been associated with increased resistance to human immunodeficiency virus infection (26), and more recently, a single amino acid change in the TLR3 product was associated with herpes simplex virus-induced encephalitis (50). Despite these examples, most host-pathogen interactions are more complex and modified by several genetic determinants. In the mouse model, disease severity after infection with viruses, bacteria, or parasites is frequently caused by multiple genetic differences, each affecting the outcome of the disease (3, 7, 8, 17, 47). Genetic modifiers that are associated with increased susceptibility to influenza virus infection or disease are mostly unknown. In humans, the duration of virus shedding was reduced in HLA-A2+ individuals, possibly as a result of a stronger cellular immune response (9). In mice, the resistance to influenza virus infection was mapped to the MX1 protein (39, 44, 46). The human MX1 protein also restricts viral replication, but its efficacy depends on the virus strain (13).Although much work is being done to define the viral factors affecting H5N1 influenza virus pathogenesis, little has been done to elucidate the effect of host genetics on H5N1 disease outcome. This study was initiated to assess the effect of the host''s genetic variation on H5N1 influenza virus pathogenesis and to provide the first clues about which host genes are responsible for the increased pathogenesis of H5N1 virus infection. Genome-wide linkage analysis using BXD recombinant inbred (BXD RI) strains was performed to identify areas on the chromosome that contribute to the difference in susceptibility to H5N1 virus seen between C57BL/6J and DBA/2J mice.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号