首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2018年   1篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有36条查询结果,搜索用时 218 毫秒
21.
22.
23.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   
24.
Factors influencing the release of proteins by cultured schwann cells   总被引:15,自引:9,他引:6       下载免费PDF全文
Cultured rat schwann cells grown in association with sensory neurons when labeled with [(3)H]leucinem, [(3)H]glucosamine, or [(35)S]methionine release labeled polypeptides into the culture medium. Analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the culture medium reveals a reproducible pattern of more than 20 polypeptides with molecular weights ranging from 15,000 to more than 250,000. Five major polypeptides (apparent molecular weights 225,000, 210,000, 90,000, 66,000, 50,000, and 40,000) account for approximately 40 percent of the leucine or methionine radioactivity in medium polypeptide. Schwann cells grown in a serum-free defined medium, in which schwann cells do not relate normally to axons, release approximately four times less labeled medium polypeptides tha cultures grown in medium supplemented with serum and chick embryo extract. In addition, there is a qualitative difference in the pattern of medium polypeptides resolved by SDS-PAGE, so that a single polypeptide (mol wt 40,000) accounts for nearly all of the label in medium polypeptides. Switching of cultures grown in defined medium to supplemented medium for 2 d results in a fourfold increase in the amount of labeled polypeptides appearing in the culture medium, and a return to the normal pattern of medium polypeptides appearing in the culture medium, and a return to the normal pattern of medium polypeptides as resolved by SDS-PAGE. This change in the pattern of polypeptides release by schwann cells is accompanied by changes in the association between schwann cells and axons. An early step in the establishment of normal axon-schwann cell relations appears to be an inward migration of schwann cells into axonal bundles and spreading of schwann cells along neurites. These changes are evident within 48 h after medium shift. Our results thus suggest that the release of proteins by schwann cells may be important for the development of normal axonal ensheathment.  相似文献   
25.
26.
We propose models for in vitro grown mammalian prion protein fibrils based upon left handed beta helices formed both from the N-terminal and C-terminal regions of the proteinase resistant infectious prion core. The C-terminal threading onto a β-helical structure is almost uniquely determined by fixing the cysteine disulfide bond on a helix corner. In comparison to known left handed helical peptides, the resulting model structures have similar stability attributes including relatively low root mean square deviations in all atom molecular dynamics, substantial side-chain-to-side-chain hydrogen bonding, good volume packing fraction, and low hydrophilic/hydrophobic frustration. For the N-terminus, we propose a new threading of slightly more than two turns, which improves upon the above characteristics relative to existing three turn β-helical models. The N-terminal and C-terminal beta helices can be assembled into eight candidate models for the fibril repeat units, held together by large hinge (order 30 residues) domain swapping, with three amenable to fibril promoting domain swapping via a small (five residue) hinge on the N-terminal side. Small concentrations of the metastable C-terminal β helix in vivo might play a significant role in templating the infectious conformation and in enhancing conversion kinetics for inherited forms of the disease and explain resistance (for canines) involving hypothesized coupling to the methionine 129 sulfur known to play a role in human disease.Key words: prion, amyloid fibril, domain swap, beta helix, computational biology  相似文献   
27.

Background  

Alignments of homologous DNA sequences are crucial for comparative genomics and phylogenetic analysis. However, multiple alignment represents a computationally difficult problem. For protein-coding DNA sequences, it is more advantageous in terms of both speed and accuracy to align the amino-acid sequences specified by the DNA sequences rather than the DNA sequences themselves. Many implementations making use of this concept of "translated alignments" are incomplete in the sense that they require the user to manually translate the DNA sequences and to perform the amino-acid alignment. As such, they are not well suited to large-scale automated alignments of large and/or numerous DNA data sets.  相似文献   
28.
Group I introns are inserted into genes of a wide variety of bacteriophages of gram-positive bacteria. However, among the phages of enteric and other gram-negative proteobacteria, introns have been encountered only in phage T4 and several of its close relatives. Here we report the insertion of a self-splicing group I intron in the coding sequence of the DNA polymerase genes of PhiI and W31, phages that are closely related to T7. The introns belong to subgroup IA2 and both contain an open reading frame, inserted into structural element P6a, encoding a protein belonging to the HNH family of homing endonucleases. The introns splice efficiently in vivo and self-splice in vitro under mild conditions of ionic strength and temperature. We conclude that there is no barrier for maintenance of group I introns in phages of proteobacteria.  相似文献   
29.
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low‐affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin‐positive (PV) interneurons. Nrg3 and ErbB4 are located pre‐ and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo. Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short‐term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short‐term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non‐neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号