首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   126篇
  1239篇
  2023年   6篇
  2022年   13篇
  2021年   28篇
  2020年   9篇
  2019年   11篇
  2018年   15篇
  2017年   13篇
  2016年   25篇
  2015年   54篇
  2014年   54篇
  2013年   57篇
  2012年   85篇
  2011年   101篇
  2010年   54篇
  2009年   48篇
  2008年   75篇
  2007年   70篇
  2006年   59篇
  2005年   68篇
  2004年   59篇
  2003年   61篇
  2002年   51篇
  2001年   15篇
  2000年   10篇
  1999年   9篇
  1998年   18篇
  1997年   10篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   9篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   7篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1239条查询结果,搜索用时 15 毫秒
71.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   
72.
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid β-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane–localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.  相似文献   
73.
74.
Previous research in gorillas suggests that females engage in post‐conception mating as a form of sexual competition designed to improve their own reproductive success. This study focused on sexual behaviors in a newly formed group of western lowland gorillas (Gorilla gorilla gorilla) housed at Zoo Atlanta. All females engaged in mating outside their conceptive periods, although there was individual variation in the frequency of the behavior. An analysis of the presence/absence of sexual behavior found females, regardless of reproductive condition, were more likely to engage in sexual behavior on days when other females were sexually active. On these “co‐occurrence” days, females were significantly more likely to solicit the silverback, but copulations did not differ from expectation. The results find further evidence for sexual competition among female gorillas and suggest that this may occur throughout their reproductive cycle rather than only during pregnancy. Am. J. Primatol. 71:587–593, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
75.
Stem cell biology and systems biology are two prominent new approaches to studying cell development. In stem cell biology, the predominant method is experimental manipulation of concrete cells and tissues. Systems biology, in contrast, emphasizes mathematical modeling of cellular systems. For scientists and philosophers interested in development, an important question arises: how should the two approaches relate? This essay proposes an answer, using the model of Waddington’s landscape to triangulate between stem cell and systems approaches. This simple abstract model represents development as an undulating surface of hills and valleys. Originally constructed by C. H. Waddington to visually explicate an integrated theory of genetics, development and evolution, the landscape model can play an updated unificatory role. I examine this model’s structure, representational assumptions, and uses in all three contexts, and argue that explanations of cell development require both mathematical models and concrete experiments. On this view, the two approaches are interdependent, with mathematical models playing a crucial but circumscribed role in explanations of cell development.  相似文献   
76.
4,5-Dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity.  相似文献   
77.

Background

Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle.

Results

Using Illumina Bovine 50?K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50?K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P?<?5?×?10??5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1?Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5?Mb on BTA23, where the TDP2 gene was anchored.

Conclusions

In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle.
  相似文献   
78.
Mammalian erythropoiesis includes a step in which the nucleus is extruded through the cell membrane. We have investigated the relationship between concanavalinA (conA) plasma membrane receptors, which are known to leave the incipient reticulocyte during enucleation, and regions of the plasma membrane which bind merocyanine 540, a differentiation-specific marker of hematopoietic cells. The distribution of these two fluorescent probes was examined on living cells from the spleens of neonatal mice and on erythroleukemia cells induced to enucleate in culture. In both cases, the region of the membrane extruded with the nucleus preferentially binds conA and merocyanine 540, whereas the plasma membrane which is left behind retains the capacity to bind another lectin, wheat germ agglutinin (WGA). The implications of these findings are discussed with respect to the mechanism by which markers are eliminated from the erythrocyte cell surface.  相似文献   
79.
Jasmonates are specific signal molecules in plants that are involved in a diverse set of physiological and developmental processes. However, methyl jasmonate (MeJA) has been shown to have a negative effect on root growth and, so far, the biochemical mechanism for this is unknown. Using Catharanthus roseus hairy roots, we were able to observe the effect of MeJA on growth inhibition, cell disorganization and cell death of the root cap. Hairy roots treated with MeJA induced the perturbation of mitochondrial membrane integrity and a diminution in ATP biosynthesis. Furthermore, several proteins were identified that were involved in energy and secondary metabolism; the changes in accumulation of these proteins were observed with 100 μM MeJA. In conclusion, our results suggest that a switch of the metabolic fate of hairy roots in response to MeJA could cause an increase in the accumulation of secondary metabolites. This is likely to have important consequences in the production of specific alkaloids important for the pharmaceutical industry.  相似文献   
80.
Members of the rare microbiome can be important components of complex microbial communities. For example, pet dog ownership is a known risk factor for human campylobacteriosis, and Campylobacter is commonly detected in dog feces by targeted assays. However, these organisms have not been detected by metagenomic methods. The goal of this study was to characterize fecal microbiota from healthy and diarrheic pet dogs using two different levels of molecular detection. PCR amplification and pyrosequencing of the universal cpn60 gene target was used to obtain microbial profiles from each dog. To investigate the relatively rare epsilon-proteobacteria component of the microbiome, a molecular enrichment was carried out using a PCR that first amplified the cpn10–cpn60 region from epsilon-proteobacteria, followed by universal cpn60 target amplification and pyrosequencing. From the non-enriched survey, the major finding was a significantly higher proportion of Bacteroidetes, notably Bacteroides vulgatus, in healthy dogs compared to diarrheic dogs. Epsilon-proteobacteria from the genera Helicobacter and Campylobacter were also detected at a low level in the non-enriched profiles of some dogs. Molecular enrichment increased the proportion of epsilon-proteobacteria sequences detected from each dog, as well as identified novel, presumably rare sequences not seen in the non-enriched profiles. Enriched profiles contained known species of Arcobacter, Campylobacter, Flexispira, and Helicobacter and identified two possibly novel species. These findings add to our understanding of the canine fecal microbiome in general, the epsilon-proteobacteria component specifically, and present a novel modification to traditional metagenomic approaches for study of the rare microbiome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号