首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1094篇
  免费   125篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   9篇
  2019年   12篇
  2018年   14篇
  2017年   12篇
  2016年   25篇
  2015年   54篇
  2014年   53篇
  2013年   57篇
  2012年   83篇
  2011年   100篇
  2010年   55篇
  2009年   48篇
  2008年   73篇
  2007年   69篇
  2006年   58篇
  2005年   67篇
  2004年   59篇
  2003年   61篇
  2002年   51篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   18篇
  1997年   10篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1219条查询结果,搜索用时 46 毫秒
991.
High concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.  相似文献   
992.
Anterior cruciate ligament (ACL) neuromuscular training programs have demonstrated beneficial effects in reducing ACL injuries, yet further evaluation of their effects on biomechanical measures across a sports team season is required to elucidate the specific factors that are modifiable. The purpose of this study was to evaluate the effects of a 10-week off-season neuromuscular training program on lower extremity kinematics. Twelve Division I female soccer players (age: 19.2 ± 0.8 years, height: 1.67 ± 0.1 m, weight: 60.2 ± 6.5 kg) performed unanticipated dynamic trials of a running stop-jump task pretraining and posttraining. Data collection was performed using an 8-camera Vicon system (Los Angeles, CA, USA) and 2 Bertec (Columbus, OH, USA) force plates. The 10-week training program consisted of resistance training 2 times per week and field training, consisting of plyometric, agility, and speed drills, 2 times per week. Repeated measures analyses of variance (ANOVAs) were used to assess the differences between pretraining and posttraining kinetics and kinematics of the hip, knee, and ankle at initial contact (IC), peak knee flexion (PKF), and peak stance. Repeated measures ANOVAs were also used to assess isometric strength differences pretraining and posttraining. The alpha level was set at 0.05 a priori. The training program demonstrated significant increases in left hip extension, left and right hip flexion, and right hip adduction isometric strength. At IC, knee abduction angle moved from an abducted to an adducted position (-1.48 ± 3.65° to 1.46 ± 3.86°, p = 0.007), and hip abduction angle increased (-6.05 ± 4.63° to -10.34 ± 6.83°, p = 0.007). Hip abduction angle at PKF increased (-2.23 ± 3.40° to 6.01 ± 3.82°, p = 0.002). The maximum knee extension moment achieved at peak stance increased from pretraining to posttraining (2.02 ± 0.32 to 2.38 ± 0.75 N·m·kg?1, p = 0.027). The neuromuscular training program demonstrated a potential positive effect in altering mechanics that influence the risk of incurring an ACL injury.  相似文献   
993.
994.
The Thai HIV phase III prime/boost vaccine trial (RV144) using ALVAC-HIV (vCP1521) and AIDSVAX B/E was, to our knowledge, the first to demonstrate acquisition efficacy. Vaccine-induced, cell-mediated immune responses were assessed. T cell epitope mapping studies using IFN-γ ELISPOT was performed on PBMCs from HIV-1-uninfected vaccine (n = 61) and placebo (n = 10) recipients using HIV-1 Env peptides. Positive responses were measured in 25 (41%) vaccinees and were predominantly CD4(+) T cell-mediated. Responses were targeted within the HIV Env region, with 15 of 25 (60%) of vaccinees recognizing peptides derived from the V2 region of HIV-1 Env, which includes the α(4)β(7) integrin binding site. Intracellular cytokine staining confirmed that Env responses predominated (19 of 30; 63% of vaccine recipients) and were mediated by polyfunctional effector memory CD4(+) T cells, with the majority of responders producing both IL-2 and IFN-γ (12 of 19; 63%). HIV Env Ab titers were higher in subjects with IL-2 compared with those without IL-2-secreting HIV Env-specific effector memory T cells. Proliferation assays revealed that HIV Ag-specific T cells were CD4(+), with the majority (80%) expressing CD107a. HIV-specific T cell lines obtained from vaccine recipients confirmed V2 specificity, polyfunctionality, and functional cytolytic capacity. Although the RV144 T cell responses were modest in frequency compared with humoral immune responses, the CD4(+) T cell response was directed to HIV-1 Env and more particularly the V2 region.  相似文献   
995.
Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.  相似文献   
996.
Sequence determination using HLA-DPB1 allele-specific primers for a DNA sample donated by an African-American individual revealed the presence of a novel haplotype. This new allele was found as a heterozygote together with HLA-DPB1*0402. The new allele was similar to HLA-DPB1*1601, however, it varied in two single nucleotide polymorphisms resulting in alanine residues at positions 55 and 56 of the mature protein rather than aspartic acid and glutamic acid, respectively. Allele-specific DNA-sequence determination was verified by sequence determination in forward and reverse directions after cloning in pCR2.1. This cloning strategy resulted in DNA products representing 19 clones confirming the novel allele (GenBank accession number AY823995 and is now listed in the IMGT/HLA database as HLA-DPB1*0403) and 17 clones representing HLA-DPB1*0402.  相似文献   
997.
Ganoderma boninense is the causal agent of a devastating disease affecting oil palm in Southeast Asian countries. Basal stem rot (BSR) disease slowly rots the base of palms, which radically reduces productive lifespan of this lucrative crop. Previous reports have indicated the successful use of Trichoderma as biological control agent (BCA) against G. boninense and isolate T. virens 7b was selected based on its initial screening. This study attempts to decipher the mechanisms responsible for the inhibition of G. boninense by identifying and characterizing the chemical compounds as well as the physical mechanisms by T. virens 7b. Hexane extract of the isolate gave 62.60% ± 6.41 inhibition against G. boninense and observation under scanning electron microscope (SEM) detected severe mycelial deformation of the pathogen at the region of inhibition. Similar mycelia deformation of G. boninense was observed with a fungicide treatment, Benlate® indicating comparable fungicidal effect by T. virens 7b. Fraction 4 and 5 of hexane active fractions through preparative thin layer chromatography (P-TLC) was identified giving the best inhibition of the pathogen. These fractions comprised of ketones, alcohols, aldehydes, lactones, sesquiterpenes, monoterpenes, sulphides, and free fatty acids profiled through gas chromatography mass spectrometry detector (GC/MSD). A novel antifungal compound discovery of phenylethyl alcohol (PEA) by T. virens 7b is reported through this study. T. virens 7b also proved to be an active siderophore producer through chrome azurol S (CAS) agar assay. The study demonstrated the possible mechanisms involved and responsible in the successful inhibition of G. boninense.  相似文献   
998.
The transfer of organic material from one coastal environment to another can increase production in recipient habitats in a process known as spatial subsidy. Microorganisms drive the generation, transformation, and uptake of organic material in shallow coastal environments, but their significance in connecting coastal habitats through spatial subsidies has received limited attention. We address this by presenting a conceptual model of coastal connectivity that focuses on the flow of microbially mediated organic material in key coastal habitats. Our model suggests that it is not the difference in generation rates of organic material between coastal habitats but the amount of organic material assimilated into microbial biomass and respiration that determines the amount of material that can be exported from one coastal environment to another. Further, the flow of organic material across coastal habitats is sensitive to environmental change as this can alter microbial remineralization and respiration rates. Our model highlights microorganisms as an integral part of coastal connectivity and emphasizes the importance of including a microbial perspective in coastal connectivity studies.  相似文献   
999.
Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.  相似文献   
1000.
The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号