首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   363篇
  2873篇
  2022年   18篇
  2021年   52篇
  2020年   21篇
  2019年   21篇
  2018年   21篇
  2017年   21篇
  2016年   41篇
  2015年   92篇
  2014年   84篇
  2013年   107篇
  2012年   151篇
  2011年   160篇
  2010年   87篇
  2009年   86篇
  2008年   116篇
  2007年   142篇
  2006年   107篇
  2005年   124篇
  2004年   110篇
  2003年   111篇
  2002年   94篇
  2001年   63篇
  2000年   59篇
  1999年   34篇
  1998年   39篇
  1997年   35篇
  1996年   27篇
  1995年   19篇
  1993年   26篇
  1992年   36篇
  1991年   34篇
  1990年   44篇
  1989年   33篇
  1988年   33篇
  1987年   38篇
  1986年   22篇
  1985年   35篇
  1984年   24篇
  1983年   29篇
  1982年   27篇
  1981年   24篇
  1979年   27篇
  1978年   30篇
  1977年   28篇
  1976年   21篇
  1975年   26篇
  1974年   33篇
  1973年   35篇
  1972年   21篇
  1969年   17篇
排序方式: 共有2873条查询结果,搜索用时 15 毫秒
991.
992.
A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify artemisinin in rat serum. The lower limit of quantification (LLOQ) was 4 ng/mL. The calibration curve was linear from 4 ng/mL to 10,000 ng/mL (R=0.998). The assay was based on the selected reaction monitoring (SRM) transitions at m/z 305.4-151.10 for artemisinin and m/z 335.2-163.10 for arteether (internal standard). The artemisinin and internal standard can be separated from endogenous interferences in rat serum. Inter- and intra-day assay variation was less than 15%. The extraction recoveries ranged from 80.0 to 107.3% at the three concentrations (5000, 2000, and 200 ng/mL). This method was successfully applied to pharmacokinetic studies of artemisinin after intravenous and oral administration to rats.  相似文献   
993.
ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation   总被引:2,自引:0,他引:2  
Residues 417-830 of the cystic fibrosis transmembrane conductance regulator (CFTR) were expressed as a glutathione-S-transferase fusion protein. This fusion protein, NBD1/R/GST, contains the regulatory and first nucleotide binding domains of CFTR. NBD1/R/GST hydrolyzed ATP with a K(M) (60 microM) and V(max) (330 nmol/min/mg) that differed from those reported for CFTR and for a peptide containing CFTR residues 433-589. The ATPase inhibitor profile of NBD1/R/GST indicates that CFTR resembles P-glycoprotein with respect to the NBD1 ATPase catalytic mechanism. ATP hydrolysis by NBD1/R/GST was unaffected by genistein, glybenclamide, and other agents known to affect CFTR's chloride channel function, suggesting that these agents do not act by directly influencing the ATPase function of NBD1. The disease-causing mutation, G551D, reduced ATP hydrolysis by NBD1/R/GST by increasing the K(M) for ATP fourfold. This suggests that when G551D occurs in patients with cystic fibrosis, it affects CFTR function by reducing the affinity of NBD1 for ATP.  相似文献   
994.
Summary Chromosomes from a patient with a satellited Yq were stained with a silver procedure that differentially stains nucleolus organizer regions. The Yqs stained heavily in all cells examined, indicating the presence of ribosomal cistrons at this region. The Yqs also entered into satellite associations with the D and G group chromosomes at a frequency greater than would be expected through chance.  相似文献   
995.
996.
From a comparative point of view the axonal cytology and the ultrastructure of Ranvier nodes in non-giant myelinated fibers of the shrimp Penaeus are described.  相似文献   
997.
998.
999.
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) outbreaks have revealed the need for improved analytical techniques for environmental samples. Ultrafiltration (UF) is increasingly recognized as an effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. This study describes the application of hollow-fiber UF as the primary step for concentrating EHEC O157:H7 seeded into 40-liter samples of surface water, followed by an established culture/immunomagnetic-separation (IMS) method and a suite of real-time PCR assays. Three TaqMan assays were used to detect the stx1, stx2, and rfbE gene targets. The results from this study indicate that approximately 50 EHEC O157:H7 cells can be consistently recovered from a 40-liter surface water sample and detected by culture and real-time PCR. Centrifugation was investigated and shown to be a viable alternative to membrane filtration in the secondary culture/IMS step when water quality limits the volume of water that can be processed by a filter. Using multiple PCR assay sets to detect rfbE, stx1, and stx2 genes allowed for specific detection of EHEC O157:H7 from strains that do not possess all three genes. The reported sample collection and analysis procedure should be a sensitive and effective tool for detecting EHEC O157:H7 in response to outbreaks of disease associated with contaminated water.Several highly publicized outbreaks of gastrointestinal diseases caused by enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) have highlighted the threat this pathogen poses to public health (1, 2, 3, 14). Although the predominant mode of transmission to humans appears to be contaminated meat or meat products, there have been a number of outbreaks associated with contaminated water (18). Microbiological, epidemiological, and environmental studies have found an association between EHEC O157:H7 outbreaks and recreational water, drinking water, crop irrigation, and wastewater (1, 2, 14). These investigations have also revealed that enhanced rapid analytical techniques are needed to improve the speed and effectiveness of these types of investigations.Hollow-fiber ultrafiltration (UF) is a sampling technique that is emerging as an option for recovering diverse microbes from large-volume water samples (8, 9, 12, 13, 15). There have been reports of the successful application of UF for surface water as well as for other E. coli strains (8, 13), but additional data are needed to evaluate the robustness of UF for surface water and its ability to effectively concentrate EHEC O157:H7 in the presence of background microbes. The presence of competitive microbes has been shown to significantly alter the growth rate and maximal density of EHEC O157:H7 in broth culture (5).EHEC O157:H7 is generally detected in water samples by using membrane filtration, selective broth enrichment, immunomagnetic-separation (IMS), and isolation on selective agar culture plates, followed by confirmatory tests such as PCR or serological tests (6, 7). However, sensitive detection of EHEC O157:H7 in surface waters can be difficult due to high levels of competing background microorganisms (7). Membrane filtration can also limit the volume processed for turbid surface waters due to filter clogging. Centrifugation is an alternative to membrane filtration and has an advantage of not being subject to potential sample volume processing constraints for turbid water samples, so the technique could potentially increase the sensitivity of detection. A number of PCR assays have been developed for detection of EHEC O157:H7 that target a variety of virulence genes (17). Testing multiple gene targets is necessary for accurate detection because certain non-EHEC O157:H7 serotypes and other bacterial species are known to possess the target genes; therefore, the isolate cannot be determined to be EHEC O157:H7 unless multiple assays show a positive signal (19).The goals of this study were to evaluate (i) the effectiveness of a previously reported UF method (8) for application to recovering EHEC O157:H7, (ii) the effectiveness of the culture/IMS technique performed in conjunction with primary UF concentration, (iii) the effectiveness of centrifugation as an alternative for membrane filtration in the culture/IMS method, and (iv) the ability of three previously reported real-time PCR assays to accurately detect EHEC O157:H7 in surface waters (16, 17).  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号