首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   160篇
  1540篇
  2023年   6篇
  2022年   13篇
  2021年   31篇
  2020年   13篇
  2019年   12篇
  2018年   20篇
  2017年   19篇
  2016年   29篇
  2015年   65篇
  2014年   66篇
  2013年   73篇
  2012年   96篇
  2011年   115篇
  2010年   69篇
  2009年   58篇
  2008年   84篇
  2007年   86篇
  2006年   79篇
  2005年   76篇
  2004年   72篇
  2003年   72篇
  2002年   61篇
  2001年   25篇
  2000年   19篇
  1999年   16篇
  1998年   20篇
  1997年   14篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   13篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   10篇
  1981年   14篇
  1980年   9篇
  1979年   9篇
  1978年   10篇
  1977年   15篇
  1975年   4篇
  1974年   10篇
  1973年   8篇
排序方式: 共有1540条查询结果,搜索用时 0 毫秒
251.
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a3 as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pKa values during the pumping process are derived for comparison to experiments.  相似文献   
252.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   
253.
254.
255.

Background

The public health response to pandemic influenza is contingent on the pandemic strain''s severity. In late April 2009, a potentially pandemic novel H1N1 influenza strain (nH1N1) was recognized. New York City (NYC) experienced an intensive initial outbreak that peaked in late May, providing the need and opportunity to rapidly quantify the severity of nH1N1.

Methods and Findings

Telephone surveys using rapid polling methods of approximately 1,000 households each were conducted May 20–27 and June 15–19, 2009. Respondents were asked about the occurrence of influenza-like illness (ILI, fever with either cough or sore throat) for each household member from May 1–27 (survey 1) or the preceding 30 days (survey 2). For the overlap period, prevalence data were combined by weighting the survey-specific contribution based on a Serfling model using data from the NYC syndromic surveillance system. Total and age-specific prevalence of ILI attributed to nH1N1 were estimated using two approaches to adjust for background ILI: discounting by ILI prevalence in less affected NYC boroughs and by ILI measured in syndromic surveillance data from 2004–2008. Deaths, hospitalizations and intensive care unit (ICU) admissions were determined from enhanced surveillance including nH1N1-specific testing. Combined ILI prevalence for the 50-day period was 15.8% (95% CI:13.2%–19.0%). The two methods of adjustment yielded point estimates of nH1N1-associated ILI of 7.8% and 12.2%. Overall case-fatality (CFR) estimates ranged from 0.054–0.086 per 1000 persons with nH1N1-associated ILI and were highest for persons ≥65 years (0.094–0.147 per 1000) and lowest for those 0–17 (0.008–0.012). Hospitalization rates ranged from 0.84–1.34 and ICU admission rates from 0.21–0.34 per 1000, with little variation in either by age-group.

Conclusions

ILI prevalence can be quickly estimated using rapid telephone surveys, using syndromic surveillance data to determine expected “background” ILI proportion. Risk of severe illness due to nH1N1 was similar to seasonal influenza, enabling NYC to emphasize preventing severe morbidity rather than employing aggressive community mitigation measures.  相似文献   
256.
257.
ATP is the source of energy for numerous biochemical reactions in all organisms. Tailed bacteriophages use ATP to drive powerful packaging machines that translocate viral DNA into a procapsid and compact it to near-crystalline density. Here we report that a complex network of interactions dictates adenine recognition and ATP hydrolysis in the pentameric phage T4 large "terminase" (gp17) motor. The network includes residues that form hydrogen bonds at the edges of the adenine ring (Q138 and Q143), base-stacking interactions at the plane of the ring (I127 and R140), and cross-talking bonds between adenine, triphosphate, and Walker A P-loop (Y142, Q143, and R140). These interactions are conserved in other translocases such as type I/type III restriction enzymes and SF1/SF2 helicases. Perturbation of any of these interactions, even the loss of a single hydrogen bond, leads to multiple defects in motor functions. Adenine recognition is therefore a key checkpoint that ensures efficient ATP firing only when the fuel molecule is precisely engaged with the motor. This may be a common feature in the energy release mechanism of ATP-driven molecular machines that carry out numerous biomolecular reactions in biological systems.  相似文献   
258.
259.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the slow growth of multiple fluid-filled cysts predominately in the kidney tubules and liver bile ducts. Elucidation of mechanisms that control cyst growth will provide the basis for rational therapeutic intervention. We used electrophysiological methods to identify lysophosphatidic acid (LPA) as a component of cyst fluid and serum that stimulates secretory Cl- transport in the epithelial cell type that lines renal cysts. LPA effects are manifested through receptors located on the basolateral membrane of the epithelial cells resulting in stimulation of channel activity in the apical membrane. Concentrations of LPA measured in human ADPKD cyst fluid and in normal serum are sufficient to maximally stimulate ion transport. Thus, cyst fluid seepage and/or leakage of vascular LPA into the interstitial space are capable of stimulating epithelial cell secretion resulting in cyst enlargement. These observations are particularly relevant to the rapid decline in renal function in late-stage disease and to the "third hit" hypothesis that renal injury exacerbates cyst growth.  相似文献   
260.
The cytokertatins in respiratory epithelial cells (REC) of human nasal polyps and turbinates were analyzed by immunohistochemistry. Cytokeratin 19 (CK19) was present in all REC, CK5 and 14 were expressed primarily in basal cells, and CK7, 8, and 18 were found in suprabasal cells. Differences in cytoplasmic locations were also apparent among the individual cytokeratins. CK13 was not detected in any REC of these tissues. The results indicate the profile of cytokeratins in REC of human nasal polyps and turbinates is essentially identical to that of REC in the more distal respiratory tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号