首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2815篇
  免费   298篇
  3113篇
  2022年   36篇
  2021年   73篇
  2020年   26篇
  2019年   33篇
  2018年   44篇
  2017年   47篇
  2016年   58篇
  2015年   142篇
  2014年   115篇
  2013年   129篇
  2012年   177篇
  2011年   215篇
  2010年   119篇
  2009年   115篇
  2008年   147篇
  2007年   124篇
  2006年   109篇
  2005年   124篇
  2004年   121篇
  2003年   124篇
  2002年   96篇
  2001年   43篇
  2000年   48篇
  1999年   53篇
  1998年   34篇
  1997年   29篇
  1996年   29篇
  1995年   20篇
  1994年   23篇
  1993年   25篇
  1992年   38篇
  1991年   29篇
  1990年   38篇
  1989年   33篇
  1988年   29篇
  1987年   31篇
  1986年   28篇
  1985年   20篇
  1984年   22篇
  1983年   32篇
  1982年   31篇
  1981年   26篇
  1980年   21篇
  1979年   21篇
  1978年   19篇
  1977年   19篇
  1974年   20篇
  1973年   22篇
  1972年   16篇
  1970年   13篇
排序方式: 共有3113条查询结果,搜索用时 15 毫秒
51.
The distribution ofVibrio cholerae was examined in 2 Florida estuaries, Apalachicola and Tampa Bay.Vibrio cholerae serotype non-01 was the most abundant serotype, being isolated from 45% of the oyster samples, 30% of the sediments, 50% of the waters, and 75% of the blue crabs.Vibrio cholerae serotype 01 was isolated from only one oyster sample. Strong linear correlations betweenV. cholerae and temperature, salinity, or the other physical/chemical parameters measured,Escherichia coli, or fecal coliforms were not observed, but a range of temperatures and salinities appeared relevant to the distribution of the organism. The organism was present in the highest concentrations when salinities were 10‰–25‰ and temperatures were 20?C–35?C.In vitro growth curves of 95V. cholerae environmental isolates further supported that 10‰–25‰ was an ideal salinity range for the organisms. The results suggest thatV. cholerae is a widely distributed organism in the nutrient-rich warm waters of the Gulf Coast estuaries.  相似文献   
52.
53.
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.  相似文献   
54.
We report on a novel mouse in vitro brain slice preparation that contains intact callosal axons connecting anterior cingulate cortices (ACC). Callosal connections are demonstrated by the ability to regularly record epileptiform events between hemispheres (bilateral events). That the correlation of these events depends on the callosum is demonstrated by the bisection of the callosum in vitro. Epileptiform events are evoked with four different methods: (1) bath application of bicuculline (a GABA-A antagonist); (2) bicuculline+MK801 (an NMDA receptor antagonist), (3) a zero magnesium extracellular solution (0Mg); (4) focal application of bicuculline to a single cortical hemisphere. Significant increases in the number of epileptiform events, as well as increases in the ratio of bilateral events to unilateral events, are observed during bath applications of bicuculline, but not during applications of bicuculline+MK-801. Long ictal-like events (defined as events >20 seconds) are only observed in 0Mg. Whole cell patch clamp recordings of single neurons reveal strong feedforward inhibition during focal epileptiform events in the contralateral hemisphere. Within the ACC, we find differences between the rostral areas of ACC vs. caudal ACC in terms of connectivity between hemispheres, with the caudal regions demonstrating shorter interhemispheric latencies. The morphologies of many patch clamped neurons show callosally-spanning axons, again demonstrating intact callosal circuits in this in vitro preparation.  相似文献   
55.

Background

Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

Objective

To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

Design

12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

Results

55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

Conclusion

Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

Trial Registration

trialregister.nl 3638  相似文献   
56.
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad‐scale spatial‐temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter‐annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi‐scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter‐annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re‐locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio‐temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non‐migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large‐scale predictions for movement strategies, based on environmental structuring, with finer‐scale analysis of space‐use. Integrating different organizational levels of analysis provides a deeper understanding of the eco‐evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.  相似文献   
57.
Mitochondria dynamically fuse and divide within cells, and the proper balance of fusion and fission is necessary for normal mitochondrial function, morphology, and distribution. Drp1 is a dynamin-related GTPase required for mitochondrial fission in mammalian cells. It harbors four distinct domains: GTP-binding, middle, insert B, and GTPase effector. A lethal mutation (A395D) within the Drp1 middle domain was reported in a neonate with microcephaly, abnormal brain development, optic atrophy, and lactic acidemia (Waterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. (2007) N. Engl. J. Med. 356, 1736–1741). Mitochondria within patient-derived fibroblasts were markedly elongated, but the molecular mechanisms underlying these findings were not demonstrated. Because the middle domain is particularly important for the self-assembly of some dynamin superfamily proteins, we tested the hypothesis that this A395D mutation, and two other middle domain mutations (G350D, G363D) were important for Drp1 tetramerization, higher order assembly, and function. Although tetramerization appeared largely intact, each of these mutations compromised higher order assembly and assembly-dependent stimulation of Drp1 GTPase activity. Moreover, mutant Drp1 proteins exhibited impaired localization to mitochondria, indicating that this higher order assembly is important for mitochondrial recruitment, retention, or both. Overexpression of these middle domain mutants markedly inhibited mitochondrial division in cells. Thus, the Drp1 A395D lethal defect likely resulted in impaired higher order assembly of Drp1 at mitochondria, leading to decreased fission, elongated mitochondria, and altered cellular distribution of mitochondria.  相似文献   
58.
1. The hemocyanins of the Melongenidae family of marine gastropods: Melongena corona, Busycon canaliculatum, B. carica, B. contrarium, and B. spiratum exist in solution as multi-decameric aggregates characterized by sedimentation coefficients of approximately 105 S, 130 S, 150 S, 170 S, and higher values, corresponding to di-, tri-, tetra-, penta-, and larger multi-decameric particles. 2. The hemocyanins of B. contrarium and B. carica seem to form the largest decameric aggregates with the tri- to penta-decamers respresenting the major constitutents. Scanning transmission electron microscopy (STEM), both of unstained, freeze-dried and negatively-stained specimens, shows the presence of discrete aggregates consisting of up to ten decameric units. 3. The particle masses as determined by STEM mass measurements for individual molecules gave integral multiples of from 4.2 x 10(6) to 4.4 x 10(6) daltons ranging from about 8.2 x 10(6) daltons for the typical di-decamer of B. canaliculatum hemocyanin to as high as about 39 x 10(6) and 43 x 10(6) for the nano-and deca-decamers of B. contrarium hemocyanin. 4. The appearance of the higher multi-decamers in both negatively-stained and freeze-dried specimens suggest that they are formed by the addition of decameric units to a single di-decameric unit "tail-wise" in both directions. The higher aggregates formed seem to terminate with a closed head or collar at both ends of the assembly.  相似文献   
59.
Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal amidation of peptide hormones. We previously had found high expression of PAM in several regions of the developing rodent. To determine the function of PAM during mouse embryogenesis, we produced a null mutant of the PAM gene. Homozygous mutants die in utero between e14.5 and e15.5 with severe edema that is likely due to cardiovascular deficits. These defects include thinning of the aorta and carotid arteries and are very similar to those of the recently characterized adrenomedullin (AM) gene KO despite the presence of elevated immunoreactive AM in PAM KO embryos. No peptide amidation activity was detected in PAM mutant embryos, and there was no moderation of the AM-like phenotype that could be expected if any alternative peptide amidation mechanism exists in the mouse. Despite the proposed contribution of amidated peptides to neuronal cell proliferation, no alteration in neuroblast proliferation was observed in homozygous mutant embryos prior to lethality. Mice heterozygous for the mutant PAM allele develop normally and express wildtype levels of several amidated peptides despite having one half the wildtype levels of PAM activity and PAM protein. Nonetheless, both an increase in adiposity and a mild glucose intolerance developed in aged (>10 months) heterozygous mice compared to littermate controls. Ablation of PAM thus demonstrates an essential function for this gene during mouse development, while alterations in PAM activity in the adult may underlie more subtle physiologic effects.  相似文献   
60.
Two dynamic models of muscle activation and deactivation based on the concepts of ion transport, reaction rates, and muscle mechanics are proposed. Storage release and uptake of calcium by the sarcoplasmic reticulum, and a two-step chemical reaction of calcium and troponin are included in the first model. This is a concise version of the complex chemical reactions of muscle activation and deactivation in sarcoplasm. The second model is similar to the first, but calcium-troponin reactions are simplified into two nonlinear rates functions. Due to these nonlinear dynamics, the second model can explain the catch-like enhancement of isometric force response. Simulation results which match experimental data are shown. Also, two new phenomena which need further experiment to verify are predicted by the second model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号