首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   26篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   9篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
81.
82.
Summary 1. In motor organs ofMimosa pudica xylem contains living fibriform elements limited by a thick lignified highly pitted wall, whereas in other parts of the plant (stem, petiole, rachis), xylem and protoxylem vessels are closely associated with parenchyma cells which possess wall ingrowths. These ingrowths, at the apex of which the plasmalemma and the tonoplast touch, are localized like those of transfer cells of C type described byGunning andPate. Nevertheless, xylem parenchyma cells differ from cells of C type in several characteristics. Moreover, in motor organs, phloem contains cells characterized by wall ingrowths, less abundant on the parts adjacent to the sieve tubes; these cells which are localized near collenchyma cells of primary phloem, look like transfer cells of A type defined byGunning andPate; they are absent from internodes, petioles and rachides. 2. In motor organs, three types of vascular cells (companion cells, living xylem fibriform elements and protoxylem parenchyma cells) are characterized by reduced vacuolar volumes and well developed membrane systems, as compared with homologuous cells belonging to other parts of the plant. 3. A symplastic continuity holds from the middle of motor organs to their cortex: it is provided by the presence, in xylem and phloem respectively, of living fibriform elements and collenchyma cells bearing numerous pit fields containing large numbers of plasmodesmata. Several ultrastructural features suggest that the vascular apparatus ofMimosa pudica would be the site of intensive lateral transfer at different levels, specially in motor organs. Possible functions of certain structures observed are discussed in relation to some hypotheses relative to excitatory conduction pathways.  相似文献   
83.
Human plasma low density lipoprotein (LDL) that had been rendered polycationic by coupling with N, N-dimethyl-1, 3-propanediamine (DMPA) was shown by electron microscopy to bind in clusters to the surface of human fibroblasts. The clusters resembled those formed by polycationic ferritin (DMPA-feritin), a visual probe that binds to anionic site on the plasma membrane. Biochemical studies with (125)I-labeled DMPA-LDL showed that the membrane-bound lipoprotein was internalized and hydrolyzed in lysosomes. The turnover time for cell bound (125)I-DMPA-LDL, i.e., the time in which the amount of (125)I-DMPA-LDL degraded was equal to the steady-state cellular content of the lipoprotein, was about 50 h. Because the DMPA-LDL gained access to fibroblasts by binding nonspecifically to anionic sites on the cell surface rather than by binding to the physiologic LDL receptor, its uptake failed to be regulated under conditions in which the uptake of native LDL was reduced by feedback suppression of the LDL receptor. As a result, unlike the case with native LDL, the DMPA-LDL accumulated progressively within the cell, and this led to a massive increase in the cellular content of both free and esterified cholesterol. Studies with (14)C-oleate showed that at least 20 percent of the accumulated cholesteryl esters represented cholesterol that had been esterified within the cell. After 4 days of incubation with 10 μg/ml of DMPA-LDL, fibroblasts had accumulated so much cholesteryl ester that neutral lipid droplets were visible at the light microscope level with Oil Red O staining. By electron microscopy, these intracellular lipid droplets were observed to lack a tripartite limiting membrane. The ability to cause the overaccumulation of cholesteryl esters within cells by using DMPA-LDL provides a model system for study of the pathologic consequences at the cellular level of massive deposition of cholesteryl ester.  相似文献   
84.
85.
86.
Sodium sulfite (Na2SO3) decreased uptake from 1 m M sucrose by the parenchyma and by the veins of leaves of broadbean ( Vicia faba L. cv. Aguadulce). The decrease depended on the concentration of the pollutant and the duration of pretreatment. The inhibition was non-competitive. Sulfite affected the transmembrane potential difference (PD) of the leaf tissues. The short-term response obeyed an 'all or nothing' law. At 0.1 m M and above, sulfite led to a quick depolarization of one-third of the initial potential after a lag phase of about 5 min; for concentrations lower than 0.1 m M , sulfite did not affect the potential. By contrast, the long-term effect of Na2SO3 on the transmembrane PD strongly depended on its concentration. After 2–12 h of pretreatmemt there was no effect at 10 μ M , a weak effect at 0.1 m M , and then increasing depolarization as the pollutant concentration increased. The inhibitory effect of Na2SO3 on sucrose uptake is thus, at least partly, due to its effect on a component of the proton-motive force. ΔΨ. However, the lack of correlation noticed with 0.1 m M Na2SO3 between the effect on sucrose uptake and the long-term effect on transmembrane PD suggests numerous sites of sulfite action.  相似文献   
87.
The apoplast of mature leaves excised from broadbean (Vicia faba L.) plants was infiltrated with 2 millimolar p-chloromercuribenzenesulfonic acid (PCMBS) via the transpiration stream, and the ability of the tissues to take up sugars was tested. An infiltration time of 75 minutes was sufficient to obtain a maximal (75%) inhibition of exogenous [14C]sucrose (1 millimolar) uptake. This infiltration affected neither CO2 assimilation nor the transmembrane potential difference of leaf cells but strongly inhibited phloem loading of endogenous [14C] assimilates. The study of the symplastic relations between the different cell types of the mature leaf showed that the density of the plasmodesmata is generally very low in comparison with other species investigated so far, particularly when considering the mesophyll/bundle sheath and the bundle sheath/phloem cells connections, as well as the connections of the transfer cell-sieve tube complex with the surrounding cells. These three successive barriers therefore strongly limit the possibilities of symplastic transit of the assimilates to the conducting cells. The comparison of the densities of plasmodesmata in an importing and an exporting leaf suggests that the maturation of the leaf is characterized by a marked symplastic isolation of the phloem, and, within the phloem itself, by the isolation of the conducting complex. As a consequence, these physiological and cytological data demonstrate the apoplastic nature of loading in the mature leaf of Vicia faba, this species undoubtedly presenting a typical model for apoplastic loading.  相似文献   
88.
89.
S. Lachaud  J. L. Bonnemain 《Planta》1984,161(3):207-215
Branches were cut from young beeches (Fagus sylvatica L.) at various stages of the annual cycle and [3H]indole-3-acetic acid (0.35 nmol) was applied to the whole surface of the apical section of each branch, just below the apical bud. The labelled pulse (moving auxin) and the following weakly radioactive zone (auxin and metabolites retained by the tissues) were localized by counting: microautoradiographss were made using cross sections from these two regions. During the second fortnight of April, auxin was transported by nearly all the cells of the young primary shoot, but the label was more concentrated in the vascular bundles. Auxin transport became the more localized: the cortical parenchyma appeared to lose its ability to transport the hormone (end of April), followed in turn by the pith parenchyma (May). Polar auxin movement at that time was limited to the outer part of the bundle (cambial zone and phloem) and to the inner part (protoxylem parenchyma). Later protoxylem parenchyma ceased to carry auxin. During the whole period of cambial activity, auxin was transported and retained mainly by the cambial zone and its recent derivatives. In September, before the onset of dormancy, and in February, at the end of the resting period, the transport pathways and retention sites for auxin were mainly in the phloem, where sieve tubes often completely lacked radiolabel. When cambial reactivation occurred in the one-year shoot, auxin was mainly carried and retained again in the cambial zone and differentiating derivatives.Abbreviation IAA indole-3-acetic acid  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号