首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   600篇
  免费   84篇
  2022年   8篇
  2020年   5篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   8篇
  2014年   18篇
  2013年   18篇
  2012年   31篇
  2011年   25篇
  2010年   14篇
  2009年   21篇
  2008年   29篇
  2007年   28篇
  2006年   25篇
  2005年   36篇
  2004年   34篇
  2003年   24篇
  2002年   18篇
  2001年   20篇
  2000年   31篇
  1999年   19篇
  1998年   16篇
  1997年   16篇
  1996年   8篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1976年   4篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1971年   6篇
  1969年   6篇
  1968年   4篇
  1967年   5篇
排序方式: 共有684条查询结果,搜索用时 156 毫秒
61.
Lu HD  Chen G  Tanigawa H  Roe AW 《Neuron》2010,68(5):1002-1013
In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.  相似文献   
62.
High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.The rumen is a complex microbial ecosystem that is composed of an immense variety of bacteria, protozoa, fungi, and viruses (5). Among these microorganisms, bacteria are the most investigated population and have a significant effect on the animal''s performance. However, our understanding of how rumen bacteria change and adapt to different ruminal environments is in its infancy.In the feedlot cattle industry, when animals on a forage diet are directly put on a high-grain diet, a decrease in ruminal pH due to lactate production has been observed (23, 31, 42), which leads to the possibility of digestive disorders, which can cause a decrease in the animal''s performance (23, 45). Therefore, feeding programs have been implemented to adapt feedlot cattle from a high-forage diet to a high-concentrate diet by gradually increasing the concentration of grain in the diet and decreasing the fiber content (2, 35). During this adaptation to high-grain diets, significant changes in the ruminal environment and rumen bacterial population structure have been reported (17, 46, 48). However, the microbial changes that occur during this transition phase are poorly understood (17, 21, 26, 46). Studies performed to date have utilized culture-based techniques or have looked at the fluctuation of a few indicator bacteria (48, 47) to evaluate bacterial population changes. Due to limitations in culturing rumen bacteria, the use of culture-based techniques to evaluate bacterial populations substantially underestimates the diversity of microorganisms within the rumen. In this study, we have utilized culture-independent approaches to evaluate bacterial population structure and diversity using terminal restriction fragment length polymorphisms (T-RFLPs) and sequence analysis of 16S rRNA gene libraries to compare the rumen bacterial population structure in animals on prairie hay against that in animals adapting to a high-concentrate (high-grain) diet. We have also quantified the fluctuations in the populations of previously reported indicator bacterial species using quantitative real-time PCR (qRT-PCR) to assess the role of these organisms during adaptation to a high-concentrate diet.  相似文献   
63.
There is strong community-wide interest in applying molecular techniques to fungal species delimitation and identification, but selection of a standardized region or regions of the genome has not been finalized. A single marker, the ribosomal DNA internal transcribed spacer region, has frequently been suggested as the standard for fungi. We used a group of closely related blue stain fungi associated with the mountain pine beetle (Dendroctonus ponderosae Hopkins) to examine the success of such single-locus species identification, comparing the internal transcribed spacer with four other nuclear markers. We demonstrate that single loci varied in their utility for identifying the six fungal species examined, while use of multiple loci was consistently successful. In a literature survey of 21 similar studies, individual loci were also highly variable in their ability to provide consistent species identifications and were less successful than multilocus diagnostics. Accurate species identification is the essence of any molecular diagnostic system, and this consideration should be central to locus selection. Moreover, our study and the literature survey demonstrate the value of using closely related species as the proving ground for developing a molecular identification system. We advocate use of a multilocus barcode approach that is similar to the practice employed by the plant barcode community, rather than reliance on a single locus.  相似文献   
64.
65.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   
66.
We investigated the phylogenetic diversity and metabolic capabilities of members of the phylum Planctomycetes in the anaerobic, sulfide-saturated sediments of a mesophilic spring (Zodletone Spring) in southwestern Oklahoma. Culture-independent analyses of 16S rRNA gene sequences generated using Planctomycetes-biased primer pairs suggested that an extremely diverse community of Planctomycetes is present at the spring. Although sequences that are phylogenetically affiliated with cultured heterotrophic Planctomycetes were identified, the majority of the sequences belonged to several globally distributed, as-yet-uncultured Planctomycetes lineages. Using complex organic media (aqueous extracts of the spring sediments and rumen fluid), we isolated two novel strains that belonged to the Pirellula-Rhodopirellula-Blastopirellula clade within the Planctomycetes. The two strains had identical 16S rRNA gene sequences, and their closest relatives were isolates from Kiel Fjord (Germany), Keauhou Beach (HI), a marine aquarium, and tissues of marine organisms (Aplysina sp. sponges and postlarvae of the giant tiger prawn Penaeus monodon). The closest recognized cultured relative of strain Zi62 was Blastopirellula marina (93.9% sequence similarity). Detailed characterization of strain Zi62 revealed its ability to reduce elemental sulfur to sulfide under anaerobic conditions, as well as its ability to produce acids from sugars; both characteristics may potentially allow strain Zi62 to survive and grow in the anaerobic, sulfide- and sulfur-rich environment at the spring source. Overall, this work indicates that anaerobic metabolic abilities are widely distributed among all major Planctomycetes lineages and suggests carbohydrate fermentation and sulfur reduction as possible mechanisms employed by heterotrophic Planctomycetes for growth and survival under anaerobic conditions.  相似文献   
67.
68.
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion‐like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans‐synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau‐overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau‐null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.  相似文献   
69.
SoxR is a [2Fe‐2S]‐containing sensor‐regulator, which is activated through oxidation by redox‐active compounds (RACs). SoxRs show differential sensitivity to RACs, partly due to different redox potentials, such that Escherichia coli (Ec) SoxR with lower potential respond to broader range of RACs than Streptomyces coelicolor (Sc) SoxR. In S. coelicolor, the RACs that do not activate ScSoxR did not inhibit growth, suggesting that ScSoxR is tuned to respond to growth‐inhibitory RACs. Based on sequence comparison and mutation studies, two critical amino acids around the [2Fe‐2S] binding site were proposed as key determinants of sensitivity. ScSoxR‐like mutation (R127L/P131V) in EcSoxR changed its sensitivity profile as ScSoxR, whereas EcSoxR‐like mutation (L126R/V130P) in ScSoxR caused relaxed response. In accordance, the redox potentials of EcSoxRR127L/P131V and ScSoxRL126R/V130P were estimated to be ?192 ± 8 mV and ?273 ± 10 mV, respectively, approaching that of ScSoxR (?185 mV) and EcSoxR (?290 mV). Molecular dynamics simulations revealed that the R127L and P131V substitutions in EcSoxR caused more electropositive environment around [2Fe‐2S], making it harder to get oxidized. This reveals a mechanism to modulate redox‐potential in [Fe‐S]‐containing sensors by point mutations and to evolve a sensor with differential sensitivity to achieve optimal cellular physiology.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号