全文获取类型
收费全文 | 595篇 |
免费 | 31篇 |
国内免费 | 1篇 |
专业分类
627篇 |
出版年
2022年 | 8篇 |
2021年 | 10篇 |
2020年 | 7篇 |
2019年 | 5篇 |
2018年 | 7篇 |
2017年 | 18篇 |
2016年 | 15篇 |
2015年 | 31篇 |
2014年 | 44篇 |
2013年 | 40篇 |
2012年 | 63篇 |
2011年 | 58篇 |
2010年 | 35篇 |
2009年 | 25篇 |
2008年 | 32篇 |
2007年 | 28篇 |
2006年 | 31篇 |
2005年 | 27篇 |
2004年 | 17篇 |
2003年 | 19篇 |
2002年 | 16篇 |
2001年 | 17篇 |
2000年 | 11篇 |
1999年 | 16篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 1篇 |
1995年 | 5篇 |
1994年 | 6篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有627条查询结果,搜索用时 15 毫秒
51.
Sohee Baek Nam Joo Kang Grzegorz M. Popowicz Marcelino Arciniega Sung Keun Jung Sanguine Byun Nu Ry Song Yong-Seok Heo Bo Yeon Kim Hyong Joo Lee Tad A. Holak Martin Augustin Ann M. Bode Robert Huber Zigang Dong Ki Won Lee 《Journal of molecular biology》2013,425(2):411-423
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases. 相似文献
52.
Jae Gyun Byun Woo Kyun Lee Moonil Kim Doo Ahn Kwak Hanbin Kwak Taejin Park Woo Hyuk Byun Yowhan Son Jung Kee Choi Young Jin Lee Joachim Saborowski Dong Jun Chung Jin Hyun Jung 《Journal of Plant Ecology》2013,6(5):380
Aims This study aimed to develop radial growth models and to predict the potential spatial distribution of Pinus densiflora (Japanese red pine) and Quercus spp. (Oaks) in South Korea, considering topographic and climatic factors.Methods We used a dataset of diameter at breast height and radial growth estimates of individual trees, topographic and climatic factors in systematic sample plots distributed over the whole of South Korea. On the basis that radial growth is attributed primarily to tree age, we developed a radial growth model employing tree age as an explanatory variable. We estimated standard growth (SG), defined as radial growth of the tree at age 30, to eliminate the influence of tree age on radial growth. In addition, SG estimates including the Topographic Wetness Index, temperature and precipitation were calculated by the Generalized Additive Model.Important findings As a result of variogram analysis of SG, we found spatial autocorrelation between SG, topographic and climatic factors. Incremental temperature had negative impacts on radial growth of P. densiflora and positive impacts on that of Quercus spp. Precipitation was associated with positive effects on both tree species. Based on the model, we found that radial growth of P. densiflora would be more vulnerable than that of Quercus spp. to climatic factors. Through simulation with the radial growth model, it was predicted that P. densiflora stands would be gradually replaced with Quercus spp. stands in eastern coastal and southern regions of South Korea in the future. The models developed in this study will be helpful for understanding the impact of climatic factors on tree growth and for predicting changes in distribution of P. densiflora and Quercus spp. due to climate change in South Korea. 相似文献
53.
Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases 总被引:5,自引:0,他引:5
Kim JS Yu HK Ahn JH Lee HJ Hong SW Jung KH Chang SI Hong YK Joe YA Byun SM Lee SK Chung SI Yoon Y 《Biochemical and biophysical research communications》2004,313(3):534-540
Apolipoprotein(a) [apo(a)] contains the largest numbers of kringle domains identified to date. Of these, apo(a) kringle V shows significant sequence homology with plasminogen kringle 5, which is reported to be a potent angiogenesis inhibitor. To determine the effects of apo(a) kringle V on angiogenesis, it was expressed as a soluble protein (termed rhLK8) in Pichia pastoris and its in vitro and in vivo anti-angiogenic properties were examined. rhLK8 inhibited the migration of human umbilical vein endothelial cells in vitro in a dose-dependent manner. This function was associated with the down-regulation of the activation of focal adhesion kinase and the inhibition of the consequent formation of actin stress fibers/focal adhesions. rhLK8 also inhibited new capillary formation in vivo, as assessed by the chick chorioallantoic membrane assay and the Matrigel plug assay. These results indicate that rhLK8 may be an effective angiogenesis inhibitor both in vitro and in vivo. 相似文献
54.
Yu Min Song Young Mi Ha Jin-Ah Kim Ki Wung Chung Yohei Uehara Kyung Jin Lee Pusoon Chun Youngjoo Byun Hae Young Chung Hyung Ryong Moon 《Bioorganic & medicinal chemistry letters》2012,22(24):7451-7455
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor. 相似文献
55.
Introduction
We analyzed whether expansion of existing active surveillance (AS) protocols to include men with biopsy Gleason score (GS) 3+4 prostate cancer (PCa) would significantly alter pathologic and biochemical outcomes of potential candidates of AS.Methods
Among patients who underwent radical prostatectomy at our center between 2006 and 2013, we identified 577 patients (group A) who preoperatively fulfilled at least one of 6 different AS criteria. Also, we identified 217 patients (group B) with biopsy GS 3+4 but fulfilled non-GS criteria from at least one of 6 AS criteria. Designating group C as expanded group incorporating all patients in group A and B, we compared risk of unfavorable disease (pathologic GS ≥4+3 and/or pathologic T stage ≥pT3a) and biochemical recurrence (BCR)-free survival between groups.Results
Rates of unfavorable disease were not significantly different between patients of group A and C who met AS criteria from 5 institutions (all p>0.05), not including University of Toronto (p<0.001). Also BCR-free survivals were not significantly different between patients in group A and C meeting each of 6 AS criteria (all p>0.05). Among group B, PSAD>0.15 ng/mL/cm3 (p = 0.011) and tumor length of biopsy GS 3+4 core>4 mm (p = 0.007) were significant predictors of unfavorable disease. When these two criteria were newly applied in defining group B, rates of unfavorable disease in group A and B was 15.6% and 14.7%, respectively (p = 0.886).Conclusion
Overall rate of pathologically aggressive PCa harbored by potential candidates for AS may not be increased significantly with expansion of criteria to biopsy GS 3+4 under most contemporary AS protocols. PSAD and tumor length of biopsy GS 3+4 core may be useful predictors of more aggressive disease among potential candidates for AS with biopsy GS 3+4. 相似文献56.
In many organisms, trehalose protects against several environmental stresses, such as heat, desiccation, and salt, probably by stabilizing protein structures and lipid membranes. Trehalose synthesis in yeast is mediated by a complex of trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2). In this study, genes encoding TPS1 and TPS2 were isolated from Zygosaccharomyces rouxii (designated ZrTPS1 and ZrTPS2, respectively). They were functionally identified by their complementation of the tps1 and tps2 yeast deletion mutants, which are unable to grow on glucose medium and with heat, respectively. Full-length ZrTPS1 cDNA is composed of 1476 nucleotides encoding a protein of 492 amino acids with a molecular mass of 56 kDa. ZrTPS2 cDNA consists of 2843 nucleotides with an open reading frame of 2700 bp, which encodes a polypeptide of 900 amino acids with a molecular mass of 104 kDa. The amino acid sequence encoded by ZrTPS1 has relatively high homology with TPS1 of Saccharomyces cerevisiae and Schizosaccharomyces pombe, compared with TPS2. Western blot analysis showed that the antibody against S. cerevisiae TPS1 recognizes ZrTPS1. Under normal growth conditions, ZrTPS1 and ZrTPS2 were highly and constitutively expressed, unlike S. cerevisiae TPS1 and TPS2. Salt stress and heat stress reduced the expression of the ZrTPS1 and ZrTPS2 genes, respectively. 相似文献
57.
The chemical modification of purified ampicillin acylase by N-bromosuccinimide and diethylpyrocarbonate resulted in time-dependent inactivation of the enzyme. Both substrates, ampicillin and 6-aminopenicillanic acid, protected the enzyme against inactivation, suggesting that the modification occurred near or at the active site. Amino acid analyses and other data indicated that two histidyl residues per subunit molecule were essential for catalytic activity. 相似文献
58.
Gyeoung Jin Kang Mi Kyung Park Hyun Jung Byun Hyun Ji Kim Eun Ji Kim Lu Yu Boram Kim Jae Gal Shim Ho Lee Chang Hoon Lee 《Journal of cellular physiology》2020,235(2):1543-1555
Triple-negative breast cancer (TNBC) is associated with a high mortality rate, which is related to the insufficient number of appropriate biomarkers and targets. Therefore, there is an urgent need to discover appropriate biomarkers and targets for TNBC. SARNP (Hcc-1 and CIP29) is highly expressed in several cancers. It binds to UAP56, an RNA helicase component of the TREX complex in messenger RNA (mRNA) splicing and export. However, the role of SARNP in mRNA splicing and export and in the progression of breast cancer, especially of TNBC, remains unknown. Therefore, we examined the role of SARNP in mRNA splicing and export and progression of TNBC. We confirmed that SARNP binds to UAP56 and Aly and that SARNP overexpression enhances mRNA splicing, whereas its knockdown suppressed mRNA export. The SARNP overexpression induced the proliferation of MCF7 cells, whereas its knockdown induced E-cadherin expression and downregulated vimentin and N-cadherin expressions in SK-BR-3 and MDA-MB-231 cells. SARNP downregulates E-cadherin expression by interaction with pinin. Mice injected with MDA-MB-231shSARNP cells exhibited a significant reduction in tumor growth and lung metastasis compared with those injected with MDA-MB-231shCon cells in vivo. These findings suggested that SARNP is involved in mRNA splicing and export. SARNP maintains mesenchymal phenotype by escaping from inhibitory interaction with pinin leading to the downregulation of E-cadherin expression. 相似文献
59.
Yehudi Self-Medlin Jungsoo Byun Yoshiko Mizuno R. Preston Mason 《生物化学与生物物理学报:生物膜》2009,1788(6):1398-248
Oxidative damage to vascular cell membrane phospholipids causes physicochemical changes in membrane structure and lipid organization, contributing to atherogenesis. Oxidative stress combined with hyperglycemia has been shown to further increase the risk of vascular and metabolic diseases. In this study, the effects of glucose on oxidative stress-induced cholesterol domain formation were tested in model membranes containing polyunsaturated fatty acids and physiologic levels of cholesterol. Membrane structural changes, including cholesterol domain formation, were characterized by small angle X-ray scattering (SAXS) analysis and correlated with spectrophotometrically-determined lipid hydroperoxide levels. Glucose treatment resulted in a concentration-dependent increase in lipid hydroperoxide formation, which correlated with the formation of highly-ordered cholesterol crystalline domains (unit cell periodicity of 34 Å) as well as a decrease in overall membrane bilayer width. The effect of glucose on lipid peroxidation was further enhanced by increased levels of cholesterol. Treatment with free radical-scavenging agents inhibited the biochemical and structural effects of glucose, even at elevated cholesterol levels. These data demonstrate that glucose promotes changes in membrane organization, including cholesterol crystal formation, through lipid peroxidation. 相似文献
60.
Kim MJ Park MT Yoon CH Byun JY Lee SJ 《Biochemical and biophysical research communications》2008,370(2):353-358
Despite extensive investigation, the molecular mechanism of anticancer activity of sphingolipid metabolites remains to be clarified. Here we demonstrate that sphingosine induces mitochondrial cell death via Lck-mediated conformational activation of Bak in Jurkat T cell lymphoma. Treatment of cells with sphingosine rapidly induced mitochondrial membrane potential loss, cytochrome c release from mitochondria, and apoptotic cell death. Sphingosine also induced conformational activation of Bak, but not Bax. siRNA targeting of Bak effectively attenuated sphingosine-induced mitochondrial cell death, indicating that Bak is involved in sphingosine-induced mitochondrial cell death. Sphingosine also induced activation of tyrosine kinase Lck. Inhibition of Lck by treatment of PP2, a Lck inhibitor or siRNA targeting of Lck suppressed sphingosine-induced conformational activation and oligomerization of Bak, mitochondrial membrane potential loss, and apoptotic cell death, implying that activation of Lck is critically required for sphingosine-induced conformational activation of Bak and mitochondrial cell death. The results elucidated in this study provide a novel cellular mechanism for the anticancer activity of sphingolipid metabolites. 相似文献