首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   31篇
  390篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   13篇
  2015年   26篇
  2014年   19篇
  2013年   26篇
  2012年   30篇
  2011年   26篇
  2010年   24篇
  2009年   19篇
  2008年   24篇
  2007年   18篇
  2006年   19篇
  2005年   15篇
  2004年   14篇
  2003年   19篇
  2002年   20篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
31.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   
32.
33.
Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2-3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.  相似文献   
34.
OBJECTIVE: To increase knowledge on the behavior of gastrointestinal stromal tumors (GISTs) and factors influencing therapy. STUDY DESIGN: The clinicomorphological features of 158 GISTs were analyzed. Survival analysis was performed on the whole series, as well as on a selected group of patients with high risk GIST who did not receive imatinib mesylate. The impact of imatinib mesylate on the prognosis was investigated. RESULTS: Most of the GISTs had a benign behavior. The risk class was a powerful prognostic factor but was unable to predict the outcome in a single case; even patients in the high risk class not receiving imatinib mesylate had a low mortality rate. In this group, it was the mitotic activity that better correlated with prognosis, and a cut point of 10 mitoses per 50 high-power field can be fixed to discriminate cases with favorable or unfavorable outcome. Patients with GISTs presenting as aggressive disease received great benefit from imatinib mesylate therapy. CONCLUSION: Mitotic activity is important in predicting the outcome of patients with high risk GIST who present at diagnosis without dissemination. This finding can have therapeutic implications.  相似文献   
35.

Background

Enterovirus 71 (EV71) is a major causative viral agent responsible for large outbreaks of hand, foot and mouth disease (HFMD), a common rash illness in children and infants. There is no effective antiviral treatment for severe EV71 infections and no vaccine is available. The objectives of this study were to design and construct a DNA vaccine against Enterovirus 71 using the viral capsid protein (VP1) gene of EV71 and to verify the functionality of the DNA vaccine in vitro and in vivo.

Methods

The VP1 gene of EV71 from two local outbreak isolates were amplified using PCR and then inserted into a eukaryotic expression vector, pVAX1. The 3.9 kb recombinant constructs were transformed into competent E. coli cells and the positive clones were screened and selected using PCR analysis, restriction digestion analysis and DNA sequencing. The constructs were then tested for protein expression in Vero cells. Subsequently, in the in vivo studies, female Balb/c mice were immunized with the DNA vaccine constructs. Enzyme Linked Immunosorbent Assay (ELISA) and virus neutralizing assay were performed to detect the presence of anti-VP1 IgG in mice and its neutralizing effect against the EV71.

Results

The pVAX1 vector was successfully cloned with the VP1 gene from each of the isolate (S2/86/1 and 410/4) in the correct orientation and in-frame. The DNA vaccine constructs with the VP1 gene were shown to be expressed in a cell-free in vitro expression system. The VP1 protein was successfully expressed in the mammalian cell line and was detected using RT-PCR, Indirect Immunofluorescence Assay (IFA) and western blotting. The anti-VP1 IgG levels in mice immunized with the DNA vaccine constructs increased after the first booster but declined following the second booster. The anti-VP1 IgG in the mice immunized with the DNA vaccine constructs exhibited neutralising activity against EV71.

Conclusion

The promising results obtained in the present study have prompted further testing to improve the expression and immunogenicity of this potential EV71 DNA vaccine.  相似文献   
36.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.  相似文献   
37.
Volume-sensitive outwardly rectifying (VSOR) Cl channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H2O2 plays an essential role in the activation of these channels and that H2O2 per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H2O2-induced and hypotonicity-mediated VSOR Cl activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H2O2-induced and hypotonicity-mediated VSOR Cl current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 μm H2O2 VSOR Cl current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 μm H2O2, exogenous addition of ATP in the presence of extracellular Ca2+ resulted in a decrease in the half-time for VSOR Cl current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl current onset in a extracellular Ca2+-dependent manner.  相似文献   
38.

Background

Bovine Leukemia virus (BLV) is a deltaretrovirus that induces lymphoproliferation and leukemia in ruminants. In ex vivo cultures of B lymphocytes isolated from BLV-infected sheep show that spontaneous apoptosis is reduced. Here, we investigated the involvement of reactive oxygen species (ROS) in this process.

Results

We demonstrate that (i) the levels of ROS and a major product of oxidative stress (8-OHdG) are reduced, while the thioredoxin antioxidant protein is highly expressed in BLV-infected B lymphocytes, (ii) induction of ROS by valproate (VPA) is pro-apoptotic, (iii) inversely, the scavenging of ROS with N-acetylcysteine inhibits apoptosis, and finally (iv) the levels of ROS inversely correlate with the proviral loads.

Conclusion

Together, these observations underline the importance of ROS in the mechanisms of inhibition of apoptosis linked to BLV infection.  相似文献   
39.
Chemical manipulations undertaken on some bis(bromo- and dibromo-phenol) compounds previously reported by us as wide-spectrum epigenetic inhibitors let us to identify bis (bromo- and dibromo-methoxyphenyl) derivatives highly selective for PR-SET7 and EZH2 (compounds 4, 5, 9, and 10). Western blot analyses were carried out in U937 cells to determine the effects of such compounds on the methyl marks related to the tested enzymes (H3K4me1, H3K9me2, H4H20me1, and H3K27me3). The 1,5-bis(3-bromo-4-methoxyphenyl)penta-1,4-dien-3-one 4 (EC50 vs EZH2 = 74.9 μM), tested in U937 cells at 50 μM, induced massive cell death and 28% of granulocytic differentiation, highlighting the potential use of EZH2 inhibitors in cancer.  相似文献   
40.
In addition to genetic events, a variety of epigenetic events have been widely reported to contribute to the onset of many diseases including cancer. DNA methylation and histone modifications (such as acetylation, methylation, sumoylation, and phosphorylation) involving chromatin remodelling are among the most studied epigenetic mechanisms for regulation of gene expression leading, when altered, to some diseases. Epigenetic therapy tries to reverse the aberrations followed to the disruption of the balance of the epigenetic signalling ways through the use of both natural compounds and synthetic molecules, active on specific epi-targets. Such epi-drugs are, for example, inhibitors of DNA methyltransferases, histone deacetylases, histone acetyltransferases, histone methyltransferases, and histone demethylases. In this review we will focus on the chemical aspects of such molecules, joined to their effective (or potential) application in cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号