首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   14篇
  401篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   13篇
  2015年   27篇
  2014年   20篇
  2013年   31篇
  2012年   30篇
  2011年   26篇
  2010年   26篇
  2009年   19篇
  2008年   25篇
  2007年   18篇
  2006年   19篇
  2005年   15篇
  2004年   14篇
  2003年   19篇
  2002年   21篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有401条查询结果,搜索用时 31 毫秒
121.
We showed previously that protein kinase C (PKC) is required for phagocytosis of apoptotic leukocytes by murine alveolar (AM?) and peritoneal macrophages (PM?) and that such phagocytosis is markedly lower in AM? compared with PM?. In this study, we examined the roles of individual PKC isoforms in phagocytosis of apoptotic thymocytes by these two M? populations. By immunoblotting, AM? expressed equivalent PKC eta but lower amounts of other isoforms (alpha, betaI, betaII, delta, epsilon, mu, and zeta), with the greatest difference in betaII expression. A requirement for PKC betaII for phagocytosis was demonstrated collectively by phorbol 12-myristate 13-acetate-induced depletion of PKC betaII, by dose-response to PKC inhibitor Ro-32-0432, and by use of PKC betaII myristoylated peptide as a blocker. Exposure of PM? to phosphatidylserine (PS) liposomes specifically induced translocation of PKC betaII and other isoforms to membranes and cytoskeleton. Both AM? and PM? expressed functional PS receptor, blockade of which inhibited PKC betaII translocation. Our results indicate that murine tissue M? require PKC betaII for phagocytosis of apoptotic cells, which differs from the PKC isoform requirement previously described in M? phagocytosis of other particles, and imply that a crucial action of the PS receptor in this process is PKC betaII activation.  相似文献   
122.
123.
We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.  相似文献   
124.

Background

Detection of molecular tumor heterogeneity has become of paramount importance with the advent of targeted therapies. Analysis for detection should be comprehensive, timely and based on routinely available tumor samples.

Aim

To evaluate the diagnostic potential of targeted multigene next-generation sequencing (TM-NGS) in characterizing gastrointestinal cancer molecular heterogeneity.

Methods

35 gastrointestinal tract tumors, five of each intestinal type gastric carcinomas, pancreatic ductal adenocarcinomas, pancreatic intraductal papillary mucinous neoplasms, ampulla of Vater carcinomas, hepatocellular carcinomas, cholangiocarcinomas, pancreatic solid pseudopapillary tumors were assessed for mutations in 46 cancer-associated genes, using Ion Torrent semiconductor-based TM-NGS. One ampulla of Vater carcinoma cell line and one hepatic carcinosarcoma served to assess assay sensitivity. TP53, PIK3CA, KRAS, and BRAF mutations were validated by conventional Sanger sequencing.

Results

TM-NGS yielded overlapping results on matched fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues, with a mutation detection limit of 1% for fresh-frozen high molecular weight DNA and 2% for FFPE partially degraded DNA. At least one somatic mutation was observed in all tumors tested; multiple alterations were detected in 20/35 (57%) tumors. Seven cancers displayed significant differences in allelic frequencies for distinct mutations, indicating the presence of intratumor molecular heterogeneity; this was confirmed on selected samples by immunohistochemistry of p53 and Smad4, showing concordance with mutational analysis.

Conclusions

TM-NGS is able to detect and quantitate multiple gene alterations from limited amounts of DNA, moving one step closer to a next-generation histopathologic diagnosis that integrates morphologic, immunophenotypic, and multigene mutational analysis on routinely processed tissues, essential for personalized cancer therapy.  相似文献   
125.
  总被引:9,自引:0,他引:9  
The aim of this study was to investigate the metabolic properties of human articular chondrocytes derived from young, aged and osteoarthritic subjects and their genetic adaptation to a catabolic challenge (i.e. the inflammatory cytokines interleukin-1alpha and tumor necrosis factor-alpha), in the absence or presence of diacerein, a drug potentially useful in osteoarthritis. Chondrocytes in primary culture were analyzed for newly secreted proteins, metalloproteinase synthesis and activity, and production of nitric oxide by-products. Results show that chondrocytes from normal but aged subjects present biochemical properties closer to osteoarthritic-derived cartilage than to normal young cartilage, as indicated by cell morphology, cell proliferation rate and pattern of protein secretion (in particular stromelysin-1 and interstitial collagenase). According to patient age and cartilage physiopathology, chondrocytes secrete increasing amounts of a protein identified by micro-sequencing as chitinase-like protein. Upon exposure to the inflammatory cytokines, chondrocytes, regardless the age or the status of the donor, significantly enhance their production of stromelysin-1, interstitial collagenase, interleukin-6 and interleukin-8. By contrast, the chitinase-like protein is not modulated by the cytokines. The pattern of protein secretion and metalloproteinase activity in chondrocytes from aged subjects appeared to be different from that of young patients, but was highly expressed in osteoarthritic chondrocytes. Diacerein, at therapeutically useful concentrations, consistently counteracts the stimulatory effect of cytokines on newly secreted proteins, metalloproteinase activity and nitric oxide production, whereas a selective nitric oxide blocker alone is ineffective. These data demonstrate that a specific gene program is turned on in cytokine-stimulated chondrocytes, which involves production of proteins engaged in remodeling and destruction of cartilage matrix. Part of these mechanisms appears to be operative also in unstimulated aged chondrocytes. Diacerein largely prevents the metabolic alterations caused by cytokine exposure in human chondrocytes, possibly through its ability to block early intracellular mediators after cytokine stimulation, such as oxygen radicals.  相似文献   
126.
    
The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus.  相似文献   
127.
Many fish hemoglobins exhibit a marked dependence of oxygen affinity and cooperativity on proton concentration, called Root effect. Both tertiary and quaternary effects have been evoked to explain the allosteric regulation brought about by protons in fish hemoglobins. However, no general rules have emerged so far. We carried out a complementary crystallographic and microspectroscopic characterization of ligand binding to crystals of deoxy-hemoglobin from the Antarctic fish Trematomus bernacchii (HbTb) at pH 6.2 and pH 8.4. At low pH ligation has negligible structural effects, correlating with low affinity and absence of cooperativity in oxygen binding. At high pH, ligation causes significant changes at the tertiary structural level, while preserving structural markers of the T state. These changes mainly consist in a marked displacement of the position of the switch region CD corner towards an R-like position. The functional data on T-state crystals validate the relevance of the crystallographic observations, revealing that, differently from mammalian Hbs, in HbTb a significant degree of cooperativity in oxygen binding is due to tertiary conformational changes, in the absence of the T–R quaternary transition. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
128.
A dipeptide taste ligand L -aspartyl-D -2-aminobutyric acid-(S)-α-ethylbenzylamide was found to be about 2000 times more potent than sucrose. To investigate the molecular basis of its potent sweet taste, we carried out conformational analysis of this molecule and several related analogues by NMR spectroscopy, computer simulations and X-ray crystallographic studies. The results of the studies support our earlier model that an ‘L’-shape molecular array is essential for eliciting sweet taste. In addition, we have identified an aromatic group located between the stem and the base of the ‘L-shape’, which is responsible for enhancement of sweetness potency. In this study, we also assessed the optimal size of the essential hydrophobic group (X) and the effects of the chirality of the second residue toward taste. ©1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
129.
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.  相似文献   
130.
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号