首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2002年   5篇
  2001年   2篇
  1999年   2篇
  1998年   7篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有91条查询结果,搜索用时 140 毫秒
51.
OBJECTIVE: The present study investigated the effects of renovascular hypertension (2K/1C model) on the reproductive function of male rats, represented by sexual behavior, plasma prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone, and spermatogenesis. METHODS: The present experiments were performed to investigate the reproductive function of 2K/1C male Wistar rats and compare with 2K/1C male rats successfully treated for hypertension with nifedipine and was divided in the following groups: (1) Sham+V (n=10): Sham-operated males with vehicle used; (2) Sham+N (n=13): Sham-operated males treated with nifedipine (10 mg/kg/day); (3) 2K/1C+V (n=14): 2K/1C-operated males with vehicle used; and (4) 2K/1C+N (n=16): 2K/1C-operated males treated with nifedipine. RESULTS: The data indicated an association between hypertension induced by the 2K/1C model and reduction of reproductive function, as demonstrated by an impairment of sexual behavior, higher plasma PRL and lower plasma testosterone and FSH. The treatment with nifedipine prevented the reduction of sexual behavior and the increase of plasma PRL, but did not alter the reduction of plasma testosterone and FSH and spermatogenesis of 2K/1C rats. CONCLUSIONS: Reproductive function is adversely affected in the 2K/1C animal model, and high blood pressure plays a role in the modulation of plasma PRL and sexual behavior. Moreover, other events, without high blood pressure, but with high plasma renin activity associated with the 2K/1C model, contribute directly to the reduction of plasma testosterone and FSH and impaired spermatogenesis.  相似文献   
52.
Ecosystems - Seagrass meadows buffer sediments against resuspension and erosion by reducing water velocity and attenuating wave energy, thereby promoting accumulation of sediment and associated...  相似文献   
53.

Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin’s activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.

  相似文献   
54.
Gene replacement mediated by Tn5 sequences was used to integrate the Bacillus thuringiensis subsp. kurstaki HD-1 delta-endotoxin gene (tox) into the chromosome of two corn root-colonizing strains of Pseudomonas fluorescens. A Tn5 transposase deletion element containing the tox gene (delta Tn5-tox) was substituted for a Tn5 element previously present in the P. fluorescens chromosome. Two classes of delta Tn5-tox elements were made. The first class encodes kanamycin resistance in addition to the Tox protein, whereas the second class encodes only the Tox protein. Both classes of delta Tn5-tox elements can no longer transpose, owing to a 324-base-pair deletion in the transposase gene of IS50R, minimizing the potential for horizontal gene transfer of the tox gene to other bacterial species. A frameshift mutation in the transposase gene of IS50L was also constructed to eliminate the possibility of suppression or of a spontaneous reversion at the ochre termination codon that would create an active transposase. Expression of the Tox protein in P. fluorescens strains 112-12 and Ps3732-3-7 was demonstrated by an immunological assay (Western blot) and toxicity against larvae of the tobacco hornworm (Manduca sexta).  相似文献   
55.
56.
The histone demethylase, lysine (K)-specific demethylase 2A (Kdm2a), is highly conserved and expressed ubiquitously. Kdm2a can regulate cell proliferation and osteo/dentinogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs) derived from dental tissue. We used quantitative real-time RT-PCR analysis and immunohistochemistry to detect Kdm2a expression during development of the murine molar at embryonic days E12, E14, E16 and E17 and postnatal days P3 and P14. Immunohistochemistry results showed no positive staining of Kdm2a at E12. At E14, Kdm2a was expressed weakly in the inner enamel epithelium, stellate reticulum cells and dental sac. At E16, Kdm2a was expressed mainly in the inner and outer enamel epithelium, stratum intermedium and dental sac, but weaker staining was found in cervical loop and dental papilla cells adjacent to the basement membrane. At E17, the strongest Kdm2a staining was detected in the ameloblasts and stronger Kdm2a staining also was detected in the stratum intermedium, outer enamel epithelium and dental papilla cells compared to the expression at E16. Postnatally, we found that Kdm2a was localized in secretory and mature ameloblasts and odontoblasts, and dentin was unstained. Real-time RT-PCR showed that Kdm2a mRNA levels in murine germ cells increased from E12 to E14 and from E14 to E16; no significant change occurred at E16, E17 or P3, then the levels decreased at P14 compared to P3. Kdm2a expression may be closely related to cell proliferation, to ameloblast and odontoblast differentiation and to the secretion of extracellular enamel and dentin during murine tooth development.  相似文献   
57.
58.

Background

Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges.

Methodology/Principal Findings

To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally.

Conclusions/Significance

The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework — including maps and supporting metadata — will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis.  相似文献   
59.
60.
Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next‐generation sequencing of genomewide restriction‐site‐associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species‐level relationships and global population structure of Planes crabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low—likely three closely related species—with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseq FST = 0.08–0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic‐level resolution for estimating contemporary population structure in organisms with large, highly connected populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号