首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6160篇
  免费   453篇
  国内免费   3篇
  2023年   49篇
  2022年   104篇
  2021年   227篇
  2020年   102篇
  2019年   133篇
  2018年   181篇
  2017年   136篇
  2016年   244篇
  2015年   348篇
  2014年   388篇
  2013年   473篇
  2012年   537篇
  2011年   527篇
  2010年   305篇
  2009年   284篇
  2008年   315篇
  2007年   331篇
  2006年   288篇
  2005年   250篇
  2004年   231篇
  2003年   206篇
  2002年   187篇
  2001年   50篇
  2000年   37篇
  1999年   43篇
  1998年   57篇
  1997年   42篇
  1996年   26篇
  1995年   32篇
  1994年   26篇
  1993年   30篇
  1992年   27篇
  1991年   22篇
  1990年   33篇
  1989年   27篇
  1988年   16篇
  1987年   13篇
  1986年   10篇
  1985年   21篇
  1984年   22篇
  1983年   17篇
  1982年   18篇
  1981年   21篇
  1980年   25篇
  1979年   19篇
  1978年   27篇
  1977年   16篇
  1976年   10篇
  1975年   10篇
  1974年   12篇
排序方式: 共有6616条查询结果,搜索用时 15 毫秒
121.

Objectives

Although several studies have been conducted regarding Kaposi sarcoma (KS), its histogenesis still remains to be elucidated. The aim of our study was to analyze the immunophenotype of Kaposi sarcoma and to present a hypothesis about the histogenesis of this tumor, based on a case series and a review of relevant literature.

Methods

In 15 cases of KSs diagnosed during 2000–2011, the clinicopathological features were correlated with the immunoexpression of c-Kit, SMA, CD34, CD31, vascular endothelial growth factor (VEGF), COX-2, c-KIT, smooth muscle antigen (SMA), and stem cell surface marker CD105.

Results

Both CD105 and c-KIT rate of the spindle-shaped tumor cell positivity increased in parallel to the pathological stage. All cases displayed CD105 and weak c-KIT positivity in the endothelial cells. SMA, VEGF, and COX-2 were focally expressed in all cases. CD34 marked both endothelium and spindle-shaped tumor cells. No c-KIT expression was noticed in KS of the internal organs.

Conclusions

KS seems to be a variant of myofibroblastic tumors that originates from the viral modified pluripotent mesenchymal cells of the connective tissue transformed in spindle-shaped KS cells, followed by a mesenchymal-endothelial transition and a myofibroblastic-like differentiation. This paper mailnly showed that KS cannot be considered a pure vascular tumor.  相似文献   
122.
The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR) play an essential role in stabilizing the visual axis (gaze), while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space) and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify vestibularly-driven head movements in primates, and 2) assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.  相似文献   
123.
The production of hydrogen peroxide (H2O2) drives tumourigenesis in ulcerative colitis (UC). Recently, we showed that H2O2 activates DNA damage checkpoints in human colonic epithelial cells (HCEC) through c‐Jun N‐terminal Kinases (JNK) that induces p21WAF1. Moreover, caspases circumvented the G1/S and intra‐S checkpoints, and cells accumulated in G2/M. The latter observation raised the question of whether repeated H2O2 exposures alter JNK activation, thereby promoting a direct passage of cells from G2/M arrest to driven cell cycle progression. Here, we report that increased proliferation of repeatedly H2O2‐exposed HCEC cells (C‐cell cultures) was associated with (i) increased phospho‐p46 JNK, (ii) decreased total JNK and phospho‐p54 JNK and (iii) p21WAF1 down‐regulation. Altered JNK activation and p21WAF1 down‐regulation were accompanied by defects in maintaining G2/M and mitotic spindle checkpoints through adaptation, as well as by apoptosis resistance following H2O2 exposure. This may cause increased proliferation of C‐cell cultures, a defining initiating feature in the inflammation‐carcinoma pathway in UC. We further suggest that dysregulated JNK activation is attributed to a non‐apoptotic function of caspases, causing checkpoint adaptation in C‐cell cultures. Additionally, loss of cell‐contact inhibition and the overcoming of senescence, hallmarks of cancer, contributed to increased proliferation. Furthermore, there was evidence that p54 JNK inactivation is responsible for loss of cell‐contact inhibition. We present a cellular model of UC and suggest a sinusoidal pattern of proliferation, which is triggered by H2O2‐induced reactive oxygen species generation, involving an interplay between JNK activation/inactivation, p21WAF1, c‐Fos, c‐Jun/phospho‐c‐Jun, ATF2/phospho‐ATF2, β‐catenin/TCF4‐signalling, c‐Myc, CDK6 and Cyclin D2, leading to driven cell cycle progression.  相似文献   
124.
The application of UV irradiation processes are successfully proposed for the first time in the fabrication of both of the two plastic electrodes in flexible dye solar cells (DSCs) and modules. For the realization of the photo‐electrode, a customized TiO2 paste formulation and UV processing method was developed which yields 134% (48%) performance enhancement with respect to the same (binder‐free) paste treated at 120 °C. UV treatment induces both complete removal of organic media and more efficient charge collection. Significantly, highly catalytic platinized flexible counter‐electrodes are also obtained via UV photo‐induced reduction of screen‐printed platinum precursor pastes based on hexachloroplatinic acid. Using both UV‐processed electrodes, a fully plastic DSC is fabricated with a conversion efficiency of 4.3% under 1 Sun (semitransparent) and 5.3% under 0.2 Sun (opaque). Performance is within 10% of the efficiency of a glass‐based DSC prepared with the same materials but with conventional high temperature processes. The material formulations and processes are simple, and easily up‐scaled over large areas, even directly and simultaneously applicable to the preparation of both the photo‐and counter‐electrode on the same substrate which enabled us to demonstrate the first module on plastic realized with a W series interconnection.  相似文献   
125.
126.
Our aim was to comprehensively analyze promoter hypermethylation of a panel of novel and known methylation markers for thyroid neoplasms and to establish their relationship with BRAF mutation and clinicopathologic parameters of thyroid cancer. A cohort of thyroid tumors, consisting of 44 cancers and 44 benign thyroid lesions, as well as 15 samples of adjacent normal thyroid tissue, was evaluated for BRAF mutation and promoter hypermethylation. Genes for quantitative methylation specific PCR (QMSP) were selected by a candidate gene approach. Twenty-two genes were tested: TSHR, RASSF1A, RARβ2, DAPK, hMLH1, ATM, S100, p16, CTNNB1, GSTP1, CALCA, TIMP3, TGFßR2, THBS1, MINT1, CTNNB1, MT1G, PAK3, NISCH, DCC, AIM1 and KIF1A. The PCR-based “mutector assay” was used to detect BRAF mutation. All p values reported are two sided. Considerable overlap was seen in the methylation markers among the different tissue groups. Significantly higher methylation frequency and level were observed for KIF1A and RARß2 in cancer samples compared with benign tumors. A negative correlation between BRAF mutation and RASSF1A methylation, and a positive correlation with RARß2 methylation were observed in accordance with previous results. In addition, positive correlation with TIMP3 and a marginal correlation with DCC methylation were observed. The present study constitutes a comprehensive promoter methylation profile of thyroid neoplasia and shows that results must be analyzed in a tissue-specific manner to identify clinically useful methylation markers. Integration of genetic and epigenetic changes in thyroid cancer will help identify relevant biologic pathways that drive its development.  相似文献   
127.
The repression of competition by mechanisms of policing is now recognized as a major force in the maintenance of cooperation. General models on the evolution of policing have focused on the interplay between individual competitiveness and mutual policing, demonstrating a positive relationship between within-group diversity and levels of policing. We expand this perspective by investigating what is possibly the simplest example of reproductive policing: copy number control (CNC) among non-conjugative plasmids, a class of extra-chromosomal vertically transmitted molecular symbionts of bacteria. Through the formulation and analysis of a multi-scale dynamical model, we show that the establishment of stable reproductive restraint among plasmids requires the co-evolution of two fundamental plasmid traits: policing, through the production of plasmid-coded trans-acting replication inhibitors, and obedience, expressed as the binding affinity of plasmid-specific targets to those inhibitors. We explain the intrinsic replication instabilities that arise in the absence of policing and we show how these instabilities are resolved by the evolution of copy number control. Increasing levels of policing and obedience lead to improvements in group performance due to tighter control of local population size (plasmid copy number), delivering benefits both to plasmids, by reducing the risk of segregational loss and to the plasmid-host partnership, by increasing the rate of cell reproduction, and therefore plasmid vertical transmission.  相似文献   
128.
Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency.  相似文献   
129.
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.  相似文献   
130.
A novel method based on (1) initial microbiological screening and (2) a highly specific PCR is described for selection of strains expressing YGNGV motif-containing pediocin. Initial screening is carried out using spot on the lawn assay for selection of acid-free, hydrogen peroxide (H2O2)-free and secreted heat-stable inhibitory activity producing strains. This is followed by highly specific PCR for amplification of 406-bp fragment using forward primer: 5′-tggccaatatcattggtggt-3′ targeting signal peptide sequence of pediocin structural gene and reverse primer: 5′-ctactaacgcttggctggca-3′ encoding N-terminus of immunity gene. The assay was validated with Pediococcus pentosaceus NCDC273 and Pediococcus acidilactici NCDC252 using (1) digestion of amplified 406-bp fragment with HindIII restriction enzyme-producing two restriction fragments of expected sizes (227 and 179 bp), (2) nucleotide sequencing of 406-bp fragment from both strains found these pediocins identical to pediocin PA-1/AcH and (3) identification of both pediocins as pediocin PA-1 at protein level using RP-HPLC. The assay was used for screening six strains (3 pediococci, 2 lactobacilli and an Enterococcus faecium) producing acid-free, hydrogen peroxide (H2O2)-free and secreted heat-stable inhibitory activity. This resulted in the detection of three new strains (P. pentosaceus NCDC35, E. faecium NCDC124 and Lactobacillus plantarum NCDC20) producing YGNGV motif-containing pediocins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号