首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   40篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   8篇
  2014年   2篇
  2013年   9篇
  2012年   13篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   20篇
  2000年   11篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   11篇
  1991年   11篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1969年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
61.
RubisCO, the CO2 fixing enzyme of the Calvin–Benson–Bassham (CBB) cycle, is responsible for the majority of carbon fixation on Earth. RubisCO fixes 12CO2 faster than 13CO2 resulting in 13C-depleted biomass, enabling the use of δ13C values to trace CBB activity in contemporary and ancient environments. Enzymatic fractionation is expressed as an ε value, and is routinely used in modelling, for example, the global carbon cycle and climate change, and for interpreting trophic interactions. Although values for spinach RubisCO (ε = ~29‰) have routinely been used in such efforts, there are five different forms of RubisCO utilized by diverse photolithoautotrophs and chemolithoautotrophs and ε values, now known for four forms (IA, B, D and II), vary substantially with ε = 11‰ to 27‰. Given the importance of ε values in δ13C evaluation, we measured enzymatic fractionation of the fifth form, form IC RubisCO, which is found widely in aquatic and terrestrial environments. Values were determined for two model organisms, the ‘Proteobacteria’ Ralstonia eutropha (ε = 19.0‰) and Rhodobacter sphaeroides (ε = 22.4‰). It is apparent from these measurements that all RubisCO forms measured to date discriminate less than commonly assumed based on spinach, and that enzyme ε values must be considered when interpreting and modelling variability of δ13C values in nature.  相似文献   
62.
All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and ''lipoprotein-like'' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.  相似文献   
63.
Among the hydrodynamic forces experienced by intertidal organisms, drag and the impingement force are thought to have the greatest effect on macroalgae. These forces are modified by biotic factors such as algal morphology, reconfiguration, and the presence of a canopy. However, much of what is known about the hydrodynamics of macroalgae has been garnered from low-velocity laboratory flume studies. Few field studies have measured drag and none have directly measured the effects of the canopy on force. To examine in situ hydrodynamic forces imposed on the turf forming macroalga Chondrus crispus, compact digital force sensors were developed that measure and record the 3-dimensional force imposed on a macroalga without disturbing the surrounding canopy. Sensors were positioned within natural Chondrus beds and the effects of the canopy, algal morphology, and sea state on in situ hydrodynamic force were examined. Additionally, the predictions of a new model for drag on flexible macroalgae were tested by simultaneously measuring force and water velocity. Digital force recordings indicated that Chondrus only experience drag; lift and impingement force were negligible in all combinations of factors. Canopies significantly reduced drag by 15-65%. Morphology and size also influenced drag, such that lower forces were imposed on small planar algae than large arborescent individuals. Further, planar algae experienced low drag in all combinations of sea and canopy state, indicating that these individuals may not be as susceptible to wave disturbance as arborescent individuals. Overall, these data indicate that the ability for Chondrus to grow large, arborescent individuals is dependent on the drag reducing properties of the canopy, while more hydrodynamically harsh habitats may be accessible to planar morphologies. Additionally, these data suggest that drag models for canopy forming macroalgae must incorporate the effects of the canopy to predict drag accurately in situ.  相似文献   
64.
Protein kinase B (PKB)/Akt is considered to be a key target downstream of insulin receptor substrate 2 (IRS2) in the regulation of β-cell mass. However, while deficiency of IRS2 in mice results in diabetes with insulin resistance and severe failure of β-cell mass and function, only loss of the PKBβ isoform leads to a mild metabolic phenotype with insulin resistance. Other isoforms were reported not to be required for metabolic regulation. To clarify the roles of the three PKB isoforms in the regulation of islet mass and glucose homeostasis, we assessed the metabolic and pancreatic phenotypes of Pkbα, Pkbβ, and Pkbγ-deficient mice. Our study uncovered a novel role for PKBα in the regulation of glucose homeostasis, whereas it confirmed that Pkbβ−/ mice are insulin resistant with compensatory increase of islet mass. Pkbα−/ mice displayed an opposite phenotype with improved insulin sensitivity, lower blood glucose, and higher serum glucagon concentrations. Pkbγ−/ mice did not show metabolic abnormalities. Additionally, our signaling analyses revealed that PKBα, but not PKBβ or PKBγ, is specifically activated by overexpression of IRS2 in β-cells and is required for IRS2 action in the islets.Adaptation of pancreatic islet mass and function relative to metabolic demand maintains glucose homeostasis and may prevent the development of type 2 diabetes. β-Cell proliferation, apoptosis, growth, and function are tightly regulated by various extracellular factors and intracellular signaling pathways (23, 24, 34). In β-cells, insulin receptor substrate 2 (IRS2) controls maintenance and expansion of islet mass (29, 31, 42). In fact, IRS2-deficient mice are insulin resistant, show β-cell failure and hyperglycemia, and finally develop diabetes (26, 42). In contrast, deficiency of IRS1 only causes insulin resistance without the development of diabetes due to a compensatory increase in functional β-cell mass (1, 38). These observations indicated that IRS2, but not IRS1, is necessary for maintenance and compensatory increase of β-cell mass. Furthermore, experiments with isolated islets revealed that overexpression of IRS2, but not of IRS1, can increase β-cell proliferation and protect cells against high-glucose-induced apoptosis (29). Downstream of IRS2, phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB) signaling is considered to be the critical pathway for the regulation of β-cell mass and function (12, 15, 16, 27). The serine-threonine kinase PKB, also known as Akt, is required for various cellular processes, from the regulation of cell cycle, survival, and growth to glucose and protein metabolism. In mammals, three PKB/Akt isoforms have been characterized and named PKBα/Akt1, PKBβ/Akt2, and PKBγ/Akt3. Although encoded by different genes on different chromosomes, the three isoforms display high homology at the protein level with 80 to 85% identical residues and the same structural organization (43). However, they differ in terms of tissue-specific expression. PKBα is expressed in most tissues and PKBβ is highly expressed in insulin-responsive tissues, whereas PKBγ expression is prominent in the brain and testes (17). All three isoforms are expressed in β-cells (30, 37). The roles of PKB in different tissues have been studied in transgenic-mouse models. While Pkbα−/ and Pkbγ−/ mice show impaired fetal growth and brain development, respectively, glucose homeostasis is unaffected in both models (9, 11, 14, 39, 46). In contrast, Pkbβ−/ mice are insulin resistant and mildly glucose intolerant and have less adipose tissue. Depending on the strain and gender, these mice show either late loss of β-cells followed by the development of diabetes and mild growth deficiency or compensatory increase of β-cell mass without age-dependent progression into overt hyperglycemia (10, 17). These studies suggested that PKBβ is the only isoform playing a role in the regulation of energy homeostasis. On the other hand, constitutive activation of PKBα in β-cells is sufficient to increase growth and proliferation (5, 40), and in INS1 cells it prevents free fatty acid (FFA)-induced apoptosis (44). Furthermore, antagonizing total PKB activity in β-cells by ectopic expression of a kinase-dead mutant causes defects in insulin secretion (4), suggesting that in islets PKB is required mainly for normal function of the β-cells. Although these data support the notion that PKB must play a role in pancreatic β-cells, they are not in line with the stronger metabolic phenotype displayed by IRS2-deficient mice. In fact, PKBα and PKBγ appear not to be required to regulate glucose homeostasis (9, 11, 39), and in the case of Pkbβ−/ mice, even though glucose homeostasis is impaired due to strong peripheral insulin resistance, the overall metabolic phenotype is far less severe than in Irs2−/ mice (10), indicating that the capacity for β-cell compensation is retained in the absence of PKBβ.The aim of this study was to clarify the role of PKB in the regulation of islet mass and to define the relevance of PKB isoforms for IRS2 action in β-cells. Although it had been shown that PKBα is dispensable for the regulation of glucose homeostasis (9, 11), we found lower blood glucose concentrations in Pkbα−/ mice. Based on this observation, we assessed in more detail the metabolic and the endocrine pancreatic phenotypes of Pkbα-, Pkbβ-, or Pkbγ-deficient mice. In addition, glucose uptake into fat cells, insulin secretion, and islet cell proliferation were investigated. Contrary to previous assumptions implying that PKBβ is the only (or at least the main) isoform playing a role in the regulation of glucose metabolism, we present evidence that both PKBα and PKBβ isoforms are required in the periphery for regulation of glucose homeostasis. While we confirmed that Pkbβ−/ mice are insulin resistant and glucose intolerant with compensatory increase of β-cell mass, Pkbα−/ mice showed lower blood glucose levels, were more insulin sensitive, and revealed higher serum glucagon concentrations accompanied by a mild increase in α-cell mass and proliferation. Moreover, our in vitro experiments showed that PKBα is specifically activated by IRS2 in β-cells and that its activation is required for IRS2-induced proliferation in islets.  相似文献   
65.
66.
Genetic variability within and among 19 landraces and cultivars of red clover ( Trifolium pratense L.) was investigated by means of amplified fragment length polymorphism (AFLP) analysis in order to assess the potential value of Swiss Mattenklee landraces as genetic resources for plant breeding and the preservation of biodiversity. Populations were classified into three groups according to their origin and agronomic features: Mattenklee landraces (8), Mattenklee cultivars (8) and field clover cultivars (3). Analysis of molecular variance based on 276 polymorphic AFLP markers revealed 80% of total variability to be due to variability within populations while 12% were attributed to variability among groups. Stepwise discriminant analysis identified a subset of 126 AFLP markers which best separated individual plants into the three respective groups. Genetic distances between populations were considerably larger among groups than among populations within the same group, providing further evidence for the genetic distinction between Mattenklee landraces, Mattenklee cultivars and field clover cultivars. AFLP markers identified two landrace clusters, containing three and four populations respectively, which, together with one additional landrace, may sufficiently represent the genetic variability of all eight landraces investigated. The results of this study strongly suggest that Swiss Mattenklee landraces form a genetically distinct group of red clover. The data obtained provide criteria on how to efficiently manage, preserve and exploit Mattenklee germplasm.  相似文献   
67.
68.
Paszkowski U  Boller T 《Planta》2002,214(4):584-590
The growth of three maize (Zea mays L.) mutants, each impaired in the formation of one individual element of its root system, was compared under "natural" limiting phosphate conditions (0.1 mM). Mutant plants exhibiting a reduction in root hairs (rth3-1) or a depletion of crown and brace roots (rtcs) grew as well as the corresponding wild-type plants. However, mutant plants lacking lateral roots (lrt1) showed a strong reduction in plant growth. The growth defect of lrt1 was overcome when it was grown in association with an arbuscular mycorrhizal fungus, Glomus mosseae. Establishment of symbiosis was associated with the occurrence of a new type of lateral root. These new lateral roots were stunted and highly branched, giving rise to a bush-like structure. Supply of high phosphate (1 microM) ameliorated the growth of lrt1 plants too, but less efficiently than the symbiosis did. Hence, arbuscular mycorrhizal fungi as well as phosphate functionally complemented the lrt1 mutation.  相似文献   
69.
70.
Lee  YC; Kawasaki  N; Lee  RT; Suzuki  N 《Glycobiology》1998,8(9):849-856
Quantum dye (QD), a macrocyclic europium-chelate, developed as a cytological marker, has never been used for quantitative applications. It would be ideal, however, if the same tracer can be used for both qualitative and quantitative purposes. We have labeled some lectins and neoglycoproteins with QD for the purpose of quantitative analyses in glycobiology, and tested its suitability in three different areas in glycobiology: (1) glycosyltransferase, (2) an animal lectin - mannose- binding protein, and (3) the Gal/GalNAc receptor of rat liver membrane. Usefulness of QD-labeled lectins was amply demonstrated by the quantification of galactosyltransferase activity using QD-soybean agglutinin and QD-RCA120 ( Ricinus communis agglutinin). We also showed that QD-labeled neoglycoproteins, QD-Man-BSA and QD-Gal-BSA, can replace radioiodinated counterparts in the binding assays of animal lectins (serum mannose binding protein and hepatic Gal/GalNAc receptor.) The advantage of QD and other europium labels is that it does not decay as radioiodides do. The long shelf-life results in more consistent results from repeated experiments.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号