首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7908篇
  免费   654篇
  国内免费   1篇
  8563篇
  2023年   33篇
  2022年   87篇
  2021年   177篇
  2020年   77篇
  2019年   116篇
  2018年   132篇
  2017年   114篇
  2016年   247篇
  2015年   375篇
  2014年   447篇
  2013年   514篇
  2012年   675篇
  2011年   655篇
  2010年   453篇
  2009年   438篇
  2008年   536篇
  2007年   527篇
  2006年   468篇
  2005年   460篇
  2004年   435篇
  2003年   414篇
  2002年   370篇
  2001年   68篇
  2000年   47篇
  1999年   64篇
  1998年   80篇
  1997年   61篇
  1996年   50篇
  1995年   40篇
  1994年   49篇
  1993年   52篇
  1992年   32篇
  1991年   35篇
  1990年   22篇
  1989年   23篇
  1988年   25篇
  1987年   16篇
  1986年   17篇
  1985年   15篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1981年   15篇
  1980年   6篇
  1978年   10篇
  1977年   12篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   4篇
排序方式: 共有8563条查询结果,搜索用时 15 毫秒
91.
92.
93.
In Arabidopsis, pre‐mRNAs of serine/arginine‐rich (SR) proteins undergo extensive alternative splicing (AS). However, little is known about the cis‐elements and trans‐acting proteins involved in regulating AS. Using a splicing reporter (GFP–intron–GFP), consisting of the GFP coding sequence interrupted by an alternatively spliced intron of SCL33, we investigated whether cis‐elements within this intron are sufficient for AS, and which SR proteins are necessary for regulated AS. Expression of the splicing reporter in protoplasts faithfully produced all splice variants from the intron, suggesting that cis‐elements required for AS reside within the intron. To determine which SR proteins are responsible for AS, the splicing pattern of the GFP–intron–GFP reporter was investigated in protoplasts of three single and three double mutants of SR genes. These analyses revealed that SCL33 and a closely related paralog, SCL30a, are functionally redundant in generating specific splice variants from this intron. Furthermore, SCL33 protein bound to a conserved sequence in this intron, indicating auto‐regulation of AS. Mutations in four GAAG repeats within the conserved region impaired generation of the same splice variants that are affected in the scl33 scl30a double mutant. In conclusion, we have identified the first intronic cis‐element involved in AS of a plant SR gene, and elucidated a mechanism for auto‐regulation of AS of this intron.  相似文献   
94.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   
95.
Sandalwood, Santalum album (Santalaceae) is a small hemi-parasitic tropical tree of great economic value. Sandalwood timber contains resins and essential oils, particularly the santalols, santalenes and dozens of other minor sesquiterpenoids. These sesquiterpenoids provide the unique sandalwood fragrance. The research described in this paper set out to identify genes involved in essential oil biosynthesis, particularly terpene synthases (TPS) in S. album, with the long-term aim of better understanding heartwood oil production. Degenerate TPS primers amplified two genomic TPS fragments from S. album, one of which enabled the isolation of two TPS cDNAs, SamonoTPS1 (1731 bp) and SasesquiTPS1 (1680 bp). Both translated protein sequences shared highest similarity with known TPS from grapevine (Vitis vinifera). Heterologous expression in Escherichia coli produced catalytically active proteins. SamonoTPS1 was identified as a monoterpene synthase which produced a mixture of (+)-α-terpineol and (−)-limonene, along with small quantities of linalool, myrcene, (−)-α-pinene, (+)-sabinene and geraniol when assayed with geranyl diphosphate. Sesquiterpene synthase SasesquiTPS1 produced the monocyclic sesquiterpene alcohol germacrene D-4-ol and helminthogermacrene, when incubated with farnesyl diphosphate. Also present were α-bulnesene, γ-muurolene, α- and β-selinenes, as well as several other minor bicyclic compounds. Although these sesquiterpenes are present in only minute quantities in the distilled sandalwood oil, the genes and their encoded enzymes described here represent the first TPS isolated and characterised from a member of the Santalaceae plant family and they may enable the future discovery of additional TPS genes in sandalwood.  相似文献   
96.
97.

Background  

In Caenorhabditis elegans, injection of double-stranded RNA (dsRNA) results in the specific inactivation of genes containing homologous sequences, a technique termed RNA-mediated interference (RNAi). It has previously been shown that RNAi can also be achieved by feeding worms Escherichia coli expressing dsRNA corresponding to a specific gene; this mode of dsRNA introduction is conventionally considered to be less efficient than direct injection, however, and has therefore seen limited use, even though it is considerably less labor-intensive.  相似文献   
98.
99.
Summary The complete assignment of1H and15N backbone resonances and near-complete1H side-chain resonance assignments have been obtained for the reduced form of a mutant of human thioredoxin (105 residues) in which the three non-active site cysteines have been substituted by alanines: C62A, C69A, C73A. The assignments were made primarily on the basis of three-dimensional.15N-separated nuclear Overhauser and Hartmann-Hahn spectroscopy, in conjunction with two-dimensional homonuclear and heteronuclear correlation experiments. Based on comparisons of short-range and interstrand nuclear Overhauser effects, patterns of amide exchange, and chemical-shift differences, the structure appears essentially unchanged from that of the previously determined solution structure of the native protein [Forman-Kay. J.D. et al. (1991)Biochemistry, 30, 2685–2698). An assay for thioredoxin shows that the C62A, C69A, C73A mutant retains activity. The assignment of the spectrum for this mutant of human thioredoxin constitutes the basis for future studies aimed at comparing the details of the active-site conformation in the reduced and oxidized forms of the protein.  相似文献   
100.
Influence of environmental factors on stomatal development   总被引:6,自引:2,他引:6  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号