首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6032篇
  免费   558篇
  国内免费   2篇
  6592篇
  2023年   16篇
  2022年   62篇
  2021年   100篇
  2020年   83篇
  2019年   113篇
  2018年   172篇
  2017年   144篇
  2016年   224篇
  2015年   308篇
  2014年   388篇
  2013年   398篇
  2012年   580篇
  2011年   475篇
  2010年   336篇
  2009年   289篇
  2008年   410篇
  2007年   403篇
  2006年   377篇
  2005年   286篇
  2004年   285篇
  2003年   263篇
  2002年   176篇
  2001年   104篇
  2000年   87篇
  1999年   63篇
  1998年   44篇
  1997年   35篇
  1996年   24篇
  1995年   23篇
  1994年   23篇
  1993年   8篇
  1992年   30篇
  1991年   22篇
  1990年   25篇
  1989年   19篇
  1988年   25篇
  1987年   14篇
  1986年   17篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   11篇
  1981年   15篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1973年   6篇
  1972年   8篇
  1965年   4篇
排序方式: 共有6592条查询结果,搜索用时 15 毫秒
71.
The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca2+-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Gαi/o antibodies. However, there is still no report which Gα proteins are involved in the activation process of TRPC4. Among Gα proteins, only Gαi protein can activate TRPC4 channel. The activation effect of Gαi was specific for TRPC4 because Gαi has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Gαi is involved specifically in the activation of TRPC4.  相似文献   
72.
Kim SJ  Matsuoka S  Patti GJ  Schaefer J 《Biochemistry》2008,47(12):3822-3831
Des-N-methylleucyl-4-(4-fluorophenyl)benzyl-vancomycin (DFPBV) retains activity against vancomycin-resistant pathogens despite its damaged d-Ala-d-Ala binding cleft. Using solid-state nuclear magnetic resonance (NMR), a DFPBV binding site in the cell walls of whole cells of Staphylococcus aureus has been identified. The cell walls were labeled with d-[1-(13)C]alanine, [1-(13)C]glycine, and l-[epsilon-(15)N]lysine. Internuclear distances from (19)F of the DFPBV to the (13)C and (15)N labels of the cell-wall peptidoglycan were determined by rotational-echo double-resonance (REDOR) NMR. The (13)C{(19)F} and (15)N{(19)F} REDOR spectra show that, in situ, DFPBV binds to the peptidoglycan as a monomer with its vancosamine hydrophobic side chain positioned near a pentaglycyl bridge. This result suggests that the antimicrobial activity of other vancosamine-modified glycopeptides depends upon both d-Ala-d-Ala stem-terminus recognition (primary binding site) and stem-bridge recognition (secondary binding site).  相似文献   
73.
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC–MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6?h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.  相似文献   
74.
Sung ZR 《Plant physiology》1981,68(1):261-264
Cultured carrot cells grow as unorganized callus tissue in medium containing auxin. Upon removal of the auxin from the medium, they grow in an organized manner and differentiate into embryos. In the normal cell line, W001C, the callus growth can be inhibited by cycloheximide, but the embryonic growth cannot. A variant cell line, WCH105, whose callus growth is resistant to cycloheximide, was isolated. The mechanism of cycloheximide resistance in embryos of both lines and in WCH105 callus was found to be cycloheximide inactivation. In addition to auxin, bromodeoxyuridine can also promote callus growth in carrot culture. Callus cultures maintained by bromodeoxyuridine behave the same as do those maintained by auxin. WCH105 callus is resistant, whereas W001C callus is sensitive to cycloheximide inhibition. Except for the onset of embryogenesis, cycloheximide inactivation is expressed throughout the embryo developmental stages up to the plantlets. These results suggest that cycloheximide inactivation is a function expressed in the differentiated, but not in the undifferentiated, tissues.  相似文献   
75.
The phenotype of endothelial cells (ECs) is specific to the vascular bed from which they originate. To examine how mechanical forces alter the phenotype of different ECs, we compared the effects of cyclic strain and motion control on reactive oxygen species (ROS) production and metabolism and cell adhesion molecule expression in human umbilical vein endothelial cells (HUVEC) vs. human aortic endothelial cells (HAEC). HUVEC and HAEC were subjected to cyclic strain (10% or 20%, 1 Hz), to a motion control that simulated fluid agitation over the cells without strain, or to static conditions for 24 h. We measured H2O2 production with dichlorodihydrofluorescein acetate and superoxide with dihydroethidium fluorescence changes; superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities spectrophotometrically; and vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 protein expression with Western blot analyses. HUVEC under cyclic strain showed 1) higher intracellular H2O2 levels, 2) increased SOD, catalase, and GPx activities, and 3) greater VCAM-1 and ICAM-1 protein expression, compared with motion control or static conditions. However, in HAEC, motion control induced higher levels of ROS, enzyme activities associated with ROS defense, and VCAM-1 and ICAM-1 expression than cyclic strain. The opposite responses obtained with these two human EC types may reflect their vessels of origin, in that HAEC are subjected to higher cyclic strain deformations in vivo than HUVEC. phenotype; reactive oxygen species; inflammation; shear stress  相似文献   
76.
Jin MS  Kim SE  Heo JY  Lee ME  Kim HM  Paik SG  Lee H  Lee JO 《Cell》2007,130(6):1071-1082
TLR2 in association with TLR1 or TLR6 plays an important role in the innate immune response by recognizing microbial lipoproteins and lipopeptides. Here we present the crystal structures of the human TLR1-TLR2-lipopeptide complex and of the mouse TLR2-lipopeptide complex. Binding of the tri-acylated lipopeptide, Pam(3)CSK(4), induced the formation of an "m" shaped heterodimer of the TLR1 and TLR2 ectodomains whereas binding of the di-acylated lipopeptide, Pam(2)CSK(4), did not. The three lipid chains of Pam(3)CSK(4) mediate the heterodimerization of the receptor; the two ester-bound lipid chains are inserted into a pocket in TLR2, while the amide-bound lipid chain is inserted into a hydrophobic channel in TLR1. An extensive hydrogen-bonding network, as well as hydrophobic interactions, between TLR1 and TLR2 further stabilize the heterodimer. We propose that formation of the TLR1-TLR2 heterodimer brings the intracellular TIR domains close to each other to promote dimerization and initiate signaling.  相似文献   
77.
We investigated the effect of high molecular weight polygamma- glutamic acid (hm gamma-PGA) on adiposity and lipid metabolism of rats in the presence of an obesity-inducing diet. Thirty-two Sprague-Dawley rats were fed either a normal-fat (11.4% kcal fat, NFC) or high-fat (51% kcal fat, HFC) diet. After 5 weeks, half of each diet-fed group was treated with hm gamma-PGA (NFP or HFP) for 4 weeks. The HFC group had significantly higher body weight, visceral fat mass, fasting serum levels of total cholesterol, LDL cholesterol, and leptin, and lower serum HDL cholesterol level compared with those of the NFC group (p < 0.05). Treatment with hm gamma-PGA decreased body weight gain and perirenal fat mass (p<0.05), fasting serum total cholesterol, and mRNA expression of glucose-6- phosphate dehydrogenase (G6PD), regardless of dietary fat contents (p < 0.01). However, hm gamma-PGA increased serum HDL cholesterol in the HFC group (p < 0.05). In vitro, 3-hydroxy-3-methylglutaryl coenzyme-A (HMGCoA) reductase activity was suppressed by the addition of hm gamma-PGA. In agreement with observations in animal study, the supplementation of hm gamma-PGA (150 mg/day) to 20 female subjects in an 8-week double-blind, placebocontrolled study resulted in a tendency to decrease total cholesterol and LDL cholesterol concentrations. We thus conclude that dietary supplementation of hm gamma-PGA may act as a hypocholestrolemic agent, secondary to its inhibitor effect on HMG-CoA reductase, and decrease abdominal adiposity by decreasing hepatic lipogenesis. The present study is an important first step in establishing the effect of hm gamma-PGA on cholesterol levels in rats and humans.  相似文献   
78.
Acylation reactions of naringin with palmitic acid were performed by a lipase after formation of highly concentrated homogeneous solutions. Their initial naringin concentration was 840–950 mM, which is 20–60 times greater than that in organic solvent media. The overall productivity of highly concentrated solutions was more than 15 times greater than those of organic phase media. The addition of DMSO (20–40%, w/w) to substrate mixtures lowered the melting temperature of a naringin–palmitic acid mixture (1:1 molar ratio) to about 40 °C. Reactions at 80 °C apparently followed Michaelis–Menten kinetics despite extremely high substrate concentrations. As the temperature increased from 60 °C to 80 °C, the apparent viscosity of the highly concentrated solution decreased remarkably from 4.31 Pa s to 0.063 Pa s. An activation energy of 7.65 kcal/mol obtained in a range of 60–75 °C suggests a diffusion-control. On the other hand, an activation energy of 17.09 kcal/mol in a range of 75–90 °C indicates a reaction-control. The highest product conversion yield of 33% (mol/mol) was obtained in a 10 h reaction at 80 °C. Addition of activated molecular sieves to the highly concentrated solution increased the product conversion yield by 7% (mol/mol), suggesting that the original equilibrium was disrupted by removing water and then a new equilibrium was reached.  相似文献   
79.
Tetramerization of the human p53 tumor suppressor protein is required for its biological functions. However, cellular levels of p53 indicate that it exists predominantly in a monomeric state. Since the oligomerization of p53 involves the rate-limiting formation of a primary dimer intermediate, we engineered a covalently linked pair of human p53 tetramerization (p53tet) domains to generate a tandem dimer (p53tetTD) that minimizes the energetic requirements for forming the primary dimer. We demonstrate that p53tetTD self-assembles into an oligomeric structure equivalent to the wild-type p53tet tetramer and exhibits dramatically enhanced oligomeric stability. Specifically, the p53tetTD dimer exhibits an unfolding/dissociation equilibrium constant of 26 fM at 37 degrees C, or a million-fold increase in stability relative to the wild-type p53tet tetramer, and resists subunit exchange with monomeric p53tet. In addition, whereas the wild-type p53tet tetramer undergoes coupled (i.e. two-state) dissociation/unfolding to unfolded monomers, the p53tetTD dimer denatures via an intermediate that is detectable by differential scanning calorimetry but not CD spectroscopy, consistent with a folded p53tetTD monomer that is equivalent to the p53tet primary dimer. Given its oligomeric stability and resistance against hetero-oligomerization, dimerization of p53 constructs incorporating the tetramerization domain may yield functional constructs that may resist exchange with wild-type or mutant forms of p53.  相似文献   
80.
Sepsis is a leading cause of acute kidney injury (AKI) and mortality in children. Understanding the development of pediatric sepsis and its effects on the kidney are critical in uncovering new therapies. The goal of this study was to characterize the development of sepsis-induced AKI in the clinically relevant cecal ligation and puncture (CLP) model of peritonitis in rat pups 17-18 days old. CLP produced severe sepsis demonstrated by time-dependent increase in serum cytokines, NO, markers of multiorgan injury, and renal microcirculatory hypoperfusion. Although blood pressure and heart rate remained unchanged after CLP, renal blood flow (RBF) was decreased 61% by 6 h. Renal microcirculatory analysis showed the number of continuously flowing cortical capillaries decreased significantly from 69 to 48% by 6 h with a 66% decrease in red blood cell velocity and a 57% decline in volumetric flow. The progression of renal microcirculatory hypoperfusion was associated with peritubular capillary leakage and reactive nitrogen species generation. Sham adults had higher mean arterial pressure (118 vs. 69 mmHg), RBF (4.2 vs. 1.1 ml·min(-1)·g(-1)), and peritubular capillary velocity (78% continuous flowing capillaries vs. 69%) compared with pups. CLP produced a greater decrease in renal microcirculation in pups, supporting the notion that adult models may not be the most appropriate for studying pediatric sepsis-induced AKI. Lower RBF and reduced peritubular capillary perfusion in the pup suggest the pediatric kidney may be more susceptible to AKI than would be predicted using adults models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号