全文获取类型
收费全文 | 93125篇 |
免费 | 280篇 |
国内免费 | 887篇 |
专业分类
94292篇 |
出版年
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 3篇 |
2019年 | 9篇 |
2018年 | 11841篇 |
2017年 | 10673篇 |
2016年 | 7453篇 |
2015年 | 587篇 |
2014年 | 287篇 |
2013年 | 293篇 |
2012年 | 4204篇 |
2011年 | 12807篇 |
2010年 | 12000篇 |
2009年 | 8221篇 |
2008年 | 9782篇 |
2007年 | 11351篇 |
2006年 | 252篇 |
2005年 | 505篇 |
2004年 | 962篇 |
2003年 | 1019篇 |
2002年 | 779篇 |
2001年 | 253篇 |
2000年 | 158篇 |
1999年 | 23篇 |
1998年 | 8篇 |
1997年 | 21篇 |
1996年 | 10篇 |
1994年 | 6篇 |
1993年 | 29篇 |
1992年 | 21篇 |
1991年 | 38篇 |
1990年 | 7篇 |
1989年 | 8篇 |
1988年 | 17篇 |
1987年 | 13篇 |
1984年 | 7篇 |
1983年 | 17篇 |
1982年 | 3篇 |
1976年 | 2篇 |
1975年 | 6篇 |
1972年 | 246篇 |
1971年 | 274篇 |
1970年 | 5篇 |
1968年 | 2篇 |
1966年 | 2篇 |
1965年 | 13篇 |
1962年 | 24篇 |
1956年 | 5篇 |
1944年 | 12篇 |
1940年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
João V. Sá Susanne Kleiderman Catarina Brito Ursula Sonnewald Marcel Leist Ana P. Teixeira Paula M. Alves 《Neurochemical research》2017,42(1):244-253
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs. 相似文献
992.
Adriana Fernanda K. Vizuete Matheus Mittmann Hennemann Carlos Alberto Gonçalves Diogo Losch de Oliveira 《Neurochemical research》2017,42(10):2730-2742
Epilepsy prevalence is high in infancy and in the elderly population. Lithium–pilocarpine is widely used to induce experimental animal models of epilepsy, leading to similar neurochemical and morphological alterations to those observed in temporal lobe epilepsy. As astrocytes have been implicated in epileptic disorders, we hypothesized that specific astroglial changes accompany and contribute to epileptogenesis. Herein, we evaluated time-dependent astroglial alterations in the hippocampus of young (27-day-old) rats at 1, 14 and 56 days after Li–pilocarpine-induced status epilepticus (SE), corresponding to different phases in this model of epilepsy. We determined specific markers of astroglial activation: GFAP, S100B, glutamine synthetase (GS), glutathione (GSH) content, aquaporin-4 (AQP-4) and potassium channel Kir 4.1; as well as epileptic behavioral, inflammatory and neurodegenerative changes. Phase-dependent signs of hippocampal astrogliosis were observed, as demonstrated by increments in GFAP, S100B and GS. Astrocyte dysfunction in the hippocampus was characterized, based on the decrease in GSH content, AQP-4 and Kir 4.1 channels. Degenerating neurons were identified by Fluoro-Jade C staining. We found a clear, early (at SE1) and persistent (at SE56) increase in cerebrospinal fluid (CSF) S100B levels. Additionally, serum S100B was found to decrease soon after SE induction, implicating a rapid-onset increase in the CSF/serum S100B ratio. However, serum S100B increased at SE14, possibly reflecting astroglial activation and/or long-term increase in cerebrovascular permeability. Moreover, we suggest that peripheral S100B levels may represent a useful marker for SE in young rats and for follow up during the chronic phases of this model of epilepsy. Together, results reinforce and extend the idea of astroglial involvement in epileptic disorders. 相似文献
993.
Xingbin Xie Jing Zhao Yu-Jin Hao Congbing Fang Yan Wang 《Plant Cell, Tissue and Organ Culture》2017,130(1):183-196
Two direct DNA transfer methods, biolistic transformation and a protoplast transformation approach using the INRA-clone 717 1B4 (Populus tremula?×?P. alba), are applied to poplars and compared. Both the in vitro culture and the transformation parameters were optimized to receive a maximum quantity of transformed cells to achieve a stable transformation. For the first time, the stable integration of gfp and dsred in the poplar genome and their expression as visual reporter genes in regenerated plantlets can be shown. For biolistic transformation, stem segments cut lengthwise and incubated for 10 days on a callus induction medium revealed the highest number of transient Gfp- and dsRed signals. After optimization of the in vitro culture parameter, Gfp and dsRed-expressing transgenic poplars were regenerated, proven by PCR and Southern blot analysis. For protoplast transformation, the focus was initially on the development of a highly efficient protoplast isolation and plant regeneration system. Using an enzyme solution consisting of 1.0% cellulase R10 and 0.24% macerozyme, 1?×?107 protoplasts were obtained from 1 g fresh weight leaves. Following incubation of the protoplasts in 600 mOsm culture medium, a high number of microcalli were obtained, from which plantlets were regenerated. The parameters for isolation and regeneration were then complemented by an efficient protoplast transformation protocol with 40% PEG1500. The results of this study confirm that both the biolistic and the protoplast transformation methods can be considered suitable for transferring cisgenes directly into poplar. 相似文献
994.
Zhen Kang Wenwen Ding Xu Gong Qingtao Liu Guocheng Du Jian Chen 《World journal of microbiology & biotechnology》2017,33(11):200
5-Aminolevulinic acid (5-ALA) is the precursor for the biosynthesis of tetrapyrrole compounds and has broad applications in the medical and agricultural fields. Because of the disadvantages of chemical synthesis methods, microbial production of 5-ALA has drawn intensive attention and has been regarded as an alternative in the last years, especially with the rapid development of metabolic engineering and synthetic biology. In this mini-review, recent advances on the application and microbial production of 5-ALA using novel biological approaches (such as whole-cell enzymatic-transformation, metabolic pathway engineering and cell-free process) are described and discussed in detail. In addition, the challenges and prospects of synthetic biology are discussed. 相似文献
995.
Korey J. Brownstein Mahmoud Gargouri William R. Folk David R. Gang 《Metabolomics : Official journal of the Metabolomic Society》2017,13(11):133
Introduction
Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.Objectives
We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.Methods
Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.Results
Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.Conclusions
Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.996.
Leyong Jiang Jun Guo Qingkai Wang Xiaoyu Dai Yuanjiang Xiang 《Plasmonics (Norwell, Mass.)》2017,12(6):1825-1831
Perfect terahertz (THz) absorption in the modified Otto configuration with the insertion of monolayer graphene sheet has been numerically demonstrated. This perfect absorption originates from the enhancement of the electrical field owing to the excitation of the transverse magnetic (TM) polarized surface plasmons at the interface of two dielectrics with monolayer graphene. It is found that the absorption peak occurs at the specific incident angles, which can be employed for realizing the angular absorbers. We further demonstrate that the angle of the peak absorption and the corresponding wavelength can be manipulated by changing the Fermi energy of monolayer graphene sheet via electrostatic biasing. Moreover, the behaviors of the perfect absorption are strongly dependent on the dielectric constants and thicknesses of the surrounding dielectrics. 相似文献
997.
Maria G. Corradini Maarten Demol Jeroen Boeve Richard D. Ludescher Iris J. Joye 《Food biophysics》2017,12(2):211-221
Protein-based particles are very promising colloidal systems for protection and controlled release applications in the food, cosmetics and pharmaceutical sector. One technique to produce these protein colloidal particles is liquid antisolvent precipitation (LAS). Despite the simplicity and versatility of LAS, not much is known about the protein conformational changes and interactions that are at the basis of the particle formation process. In this study, steady state fluorescence experiments using intrinsic fluorophores were evaluated as a tool to unravel the dynamics of the protein nanoparticle formation. Colloidal whey protein isolate and gliadin particles were produced by LAS. Changes in particle diameter (distribution), polydispersity index and photophysical properties of intrinsic fluorophores were monitored as a function of antisolvent concentration. By combining dynamic light scattering with photophysical data, a model of the changes occurring during particle formation and disintegration could be proposed. The results suggest that particle formation and disintegration are fully reversible processes during which the main changes in protein conformation (around the fluorescent probes) occur at the same antisolvent concentrations. In principle, steady state fluorescence measurements using intrinsic probes can indeed be used to effectively report on (part of the) conformational changes for both protein systems under study. 相似文献
998.
Elisa Bisicchia Laura Latini Virve Cavallucci Valeria Sasso Vanessa Nicolin Marco Molinari Marcello D’Amelio Maria Teresa Viscomi 《Molecular neurobiology》2017,54(7):4896-4907
Spinal cord injuries (SCIs) are devastating conditions of the central nervous system (CNS) for which there are no restorative therapies. Neuronal death at the primary lesion site and in remote regions that are functionally connected to it is one of the major contributors to neurological deficits following SCI.Disruption of autophagic flux induces neuronal death in many CNS injuries, but its mechanism and relationship with remote cell death after SCI are unknown. We examined the function and effects of the modulation of autophagy on the fate of axotomized rubrospinal neurons in a rat model of spinal cord dorsal hemisection (SCH) at the cervical level. Following SCH, we observed an accumulation of LC3-positive autophagosomes (APs) in the axotomized neurons 1 and 5 days after injury. Furthermore, this accumulation was not attributed to greater initiation of autophagy but was caused by a decrease in AP clearance, as demonstrated by the build-up of p62, a widely used marker of the induction of autophagy. In axotomized rubrospinal neurons, the disruption of autophagic flux correlated strongly with remote neuronal death and worse functional recovery. Inhibition of AP biogenesis by 3-methyladenine (3-MA) significantly attenuated remote degeneration and improved spontaneous functional recovery, consistent with the detrimental effects of autophagy in remote damage after SCH. Collectively, our results demonstrate that autophagic flux is blocked in axotomized neurons on SCI and that the inhibition of AP formation improves their survival. Thus, autophagy is a promising target for the development of therapeutic interventions in the treatment of SCIs. 相似文献
999.
Mansoureh Togha Mehrdad Jahanshahi Leila Alizadeh Soodeh Razeghi Jahromi Gelareh Vakilzadeh Bahram Alipour Ali Gorji Amir Ghaemi 《Molecular neurobiology》2017,54(4):2445-2457
The immunomodulatory and anti-inflammatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as an appropriate candidate for treatment of autoimmune diseases. Previous studies have revealed that treatment with BM-MSCs may modulate immune responses and alleviate the symptoms in experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Therefore, the present study was designed to examine immunomodulatory effects of BM-MSCs in the treatment of myelin oligodendrocyte glycoprotein (MOG) 35-55-induced EAE in C57BL/6 mice. MSCs were obtained from the bone marrow of C57BL mice, cultured with DMEM/F12, and characterized with flow cytometry for the presence of cell surface markers for BM-MSCs. Following three passages, BM-MSCs were injected intraperitoneally into EAE mice alone or in combination with rapamycin. Immunological and histopathological effects of BM-MSCs and addition of rapamycin to BM-MSCs were evaluated. The results demonstrated that adding rapamycin to BM-MSCs transplantation in EAE mice significantly reduced inflammation infiltration and demyelination, enhanced the immunomodulatory functions, and inhibited progress of neurological impairments compared to BM-MSC transplantation and control groups. The immunological effects of rapamycin and BM-MSC treatments were associated with the inhibition of the Ag-specific lymphocyte proliferation, CD8+ cytolytic activity, and the Th1-type cytokine (gamma-interferon (IFN-γ)) and the increase of Th-2 cytokine (interleukin-4 (IL-4) and IL-10) production. Addition of rapamycin to BM-MSCs was able to ameliorate neurological deficits and provide neuroprotective effects in EAE. This suggests the potential of rapamycin and BM-MSC combined therapy to play neuroprotective roles in the treatment of neuroinflammatory disorders. 相似文献
1000.
Samadhan Krushna Phuge 《Journal of biosciences》2017,42(3):449-457
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex. 相似文献